
Numerics II

Yoann Le Hénaff, Yanyan Shi

Summer semester, 2025
May 28, 2025

https://na.uni-tuebingen.de/~lehenaff/
https://na.uni-tuebingen.de/~shi/

2

Forefront

This document is a translation of the notes taken by Markus Klein in 2009-2010, of the lecture
given in German by Prof. Dr. Christian Lubich.

Any mistake is most likely due to YS or YLH, please email us so that we can fix it.

3

https://na.uni-tuebingen.de/~lubich/

4

Contents

1 Fast Fourier Transform 7
1.1 Fourier Series . 7
1.2 Discrete Fourier Transform . 12
1.3 Fast Fourier Transform (FFT) . 15
1.4 Approximation of Fourier coefficients, trigonometric interpolation 16
1.5 Inverse Convolution Problem, Regularization, Filtering 19
1.6 Numerical Deconvolution, Smoothing of Measured Data 23

2 Eigenvalue Problems 27
2.1 Fundamentals . 27
2.2 Conditioning of the Eigenvalue Problem . 33
2.3 Power Method . 37
2.4 Simultaneous Iteration and QR Algorithm . 40
2.5 Transformation to Hessenberg Form . 43
2.6 QR Algorithm with Shift . 46
2.7 Computation of Complex Eigenvalues . 48
2.8 Computation of Singular Values . 51

5

6 CONTENTS

Chapter 1

Fast Fourier Transform

1.1 Fourier Series

Definition 1.1 – Fourier Transform

Let (cn)n∈Z be an absolutely summable sequence of complex numbers, i.e.,
∑

n∈Z |cn| < ∞. The
Fourier transform of (cn)n∈Z is given by:

ĉ(t) =

∞∑
n=−∞

cne
int, t ∈ R.

Proposition 1.1 – Properties of the Fourier Transform

The Fourier transform ĉ(t) satisfies:

1. ĉ is 2π-periodic.

2. ĉ is continuous.

3. It satisfies the orthogonality relation:

1

2π

∫ 2π

0

e−inteimtdt =

{
1, m = n,

0, m ̸= n.

4. The inverse formula holds:

cn =
1

2π

∫ 2π

0

e−intĉ(t)dt.

5. The Parseval equation holds:

∞∑
n=−∞

|cn|2 =
1

2π

∫ 2π

0

|ĉ(t)|2dt.

6. Let (cn), (dn) be absolutely summable sequences. Then, for the convolution, we have:

(c ∗ d)n :=

∞∑
j=−∞

cn−jdj

defined as the convolution, and the convolution theorem holds:

ĉ ∗ d(t) = ĉ(t) · d̂(t)

7

8 CHAPTER 1. FAST FOURIER TRANSFORM

Proof. 2.
∑N

n=−N cne
int → ĉ(t) is uniformly convergent for N → ∞ because∣∣∣∣∣ĉ(t)−

N∑
n=−N

cne
int

∣∣∣∣∣ ≤ ∑
|n|>N

|cn| → 0

and this convergence is independent of t, implying that ĉ is continuous.

Definition 1.2 – Fourier Coefficients

Let f be a 2π-periodic continuous function. Then for n ∈ Z,

cn =
1

2π

∫ 2π

0

f(t)e−int dt

is the n-th Fourier coefficient of f , and we denote cn = f̂(n).

Theorem 1.1 – Calculation of Fourier Coefficients and Estimation

Let f be 2π-periodic and p-times differentiable, with f (p) absolutely integrable (it suffices that
f ∈ W p,1). Then the following hold:

1. The n-th Fourier coefficient of f (p) is (in)p · cn.

2. cn = O(|n|−p), i.e., |cn| ≤ M · |n|−p with

M =
1

2π

∫ 2π

0

|f (p)(t)| dt

Proof. 1. We obtain by (multiple) integration by parts:

1

2π

∫ 2π

0

f (p)(t)e−int dt = − 1

2π

∫ 2π

0

f (p−1)(t)(−in)e−int dt = (in)p
1

2π

∫ 2π

0

f(t)e−int dt

where the boundary terms vanish due to periodicity.

2. From the above, we have:

|cn| · |n|p =

∣∣∣∣ 12π
∫ 2π

0

f (p)(t)e−int dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f (p)(t)| dt

Remark 1.1

In particular, (cn) is absolutely summable if f ∈ C2 (or f ∈ W 2,1). With greater effort, it can
also be shown that f ∈ C1 would suffice.

Theorem 1.2 – Convolution Theorem

Let f, g be continuous and 2π-periodic. Then the convolution of f and g, defined by

(f ∗ g)(t) = 1

2π

∫ 2π

0

f(t− τ)g(τ) dτ

is again 2π-periodic and continuous. For the Fourier coefficients of the convolution, we have:

f̂ ∗ g(n) = f̂(n) · ĝ(n), n ∈ Z

1.1. FOURIER SERIES 9

Proof. The periodicity and continuity are clear from Analysis II. Now we calculate:

f̂ ∗ g(n) = 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0

f(t− τ)g(τ) dτ

)
e−int dt

=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

f(t− τ)e−in(t−τ) · g(τ)e−inτ dtdτ

Set s := t− τ , then we obtain:

=
1

2π

∫ 2π

0

f(s)e−insds · 1

2π

∫ 2π

0

g(τ)e−inτdτ

=f̂(n) · ĝ(n)

Thus, the claim follows.

Remark 1.2 – Generalization

The Fourier transform is also defined for n ∈ R, and the convolution theorem holds for this case
as well.

Remark 1.3 – Outlook

Can a continuous function f be recovered from its Fourier coefficients? That is, does

f(t)
?
=

∞∑
n=−∞

cne
int

We will see that without additional conditions on f , the sequence (cn) is not absolutely
summable. Even if (cn) is absolutely summable, does f(t) = ĉ(t)? We will later see that
this is indeed the case.

Theorem 1.3 – Fejér’s Theorem (Fejér, 1904)

Let f : R → C be continuous and 2π-periodic with Fourier coefficients

(cn)n∈Z =
1

2π

∫ 2π

0

e−intf(t) dt

Then the following holds:

n∑
k=−n

(
1− |k|

n+ 1

)
cke

ikt → f(t) uniformly in t

Proof. 1. We consider the convolution with the convolution theorem:

(einτ ∗ f)(t) = 1

2π

∫ 2π

0

ein(t−τ)f(τ) dτ = eintcn

Thus, by linearity:
n∑

j=−n

(
1− |j|

n+ 1

)
eijtcj := (Kn ∗ f)(t)

with the so-called Fejér kernel Kn, for which we have:

Kn(t) =

n∑
j=−n

(
1− |j|

n+ 1

)
eijt

10 CHAPTER 1. FAST FOURIER TRANSFORM

2. We show that the reduction formula holds:

Kn(t) =
1

n+ 1

(
sin
(
n+1
2 t
)

sin
(
t
2

))2

This is shown using the definition of the sine function, where we use the identity:

sin2
(
t

2

)
=

1

2
(1− cos t) = −1

4
e−it +

1

2
− 1

4
eit

Direct computation then gives the identity:(
−1

4
eit +

1

2
− 1

4
eit
) n∑

j=−n

(
1− |j|

n+ 1

)
eijt =

1

n+ 1

(
−1

4
e−i(n+t)t +

1

2
− 1

4
ei(n+1)t

)
This simplifies to:

=
1

n+ 1
sin2

(
(n+ 1)t

2

)
3. We now consider some properties:

(a) Due to the orthogonality relation:

1

2π

∫ 2π

0

Kn(t) dt =

n∑
j=−n

(
1− |j|

n+ 1

)
1

2π

∫ 2π

0

eijt︸ ︷︷ ︸
=δj0

dt = 1

(b) Kn(t) ≥ 0 ∀t, n due to the reduction formula.

(c) ∀δ ∈ (0, π), we have:

lim
n→∞

∫ 2π−δ

δ

Kn(t) dt = 0

because

Kn(t) ≤
1

n+ 1

1

sin2
(
δ
2

) → 0 as n → ∞

4. It follows that:

(Kn ∗ f)(t)− f(t) =
1

2π

∫ 2π

0

Kn(τ) (f(t− τ)− f(t)) dτ

and thus: ∫ 2π

0

Kn(τ) (f(t− τ)− f(t)) dτ = I1 + I2

where

I1 =

∫ δ

−δ

(f(t− τ)− f(t))Kn(τ)dτ and I2 =

∫ 2π−δ

δ

(f(t− τ)− f(t))Kn(τ)dτ

We estimate:

I1 ≤ max
|τ |≤δ

|f(t− τ)− f(t)| · 1

2π

∫ δ

−δ

Kn(τ)dτ ≤ 1

2π

∫ π

−π

Kn(τ)dτ = 1

We estimate the second part:

I2 ≤ 1

2
· 2 max

0≤θ≤2π
|f(θ)| ·

∫ 2π−δ

δ

|Kn(τ)|dτ︸ ︷︷ ︸
→0

1.1. FOURIER SERIES 11

Thus, for n → ∞, we have:

lim sup
n→∞

|(Kn ∗ f)(t)− f(t)| ≤ max
|τ |≤δ

|f(t− τ)− f(t)| for ∀δ ∈ (0, π)

As δ → 0, the term tends to 0 due to continuity. Since f is uniformly continuous, the
convergence is uniform. Thus, Kn ∗ f(t) → f(t) uniformly in t.

Remark 1.4

It should be noted that

n∑
k=−n

(
1− |k|

n+ 1

)
cke

int =
1

n+ 1

n∑
m=0

(
m∑

k=−m

cke
ikt

)

is the arithmetic mean of all partial sums, where the partial sums need not necessarily converge.

Theorem 1.4 – Uniqueness Theorem

Let f and g be 2π-periodic and continuous functions with the same Fourier coefficients. Then
f = g.

Proof. We have

f(t) = lim
n→∞

n∑
j=−n

(
1− |j|

n+ 1

)
cje

ijt = g(t) ∀t.

Theorem 1.5 – Representation via Fourier Coefficients

Let f be a 2π-periodic and continuous function. If the Fourier coefficients are absolutely
summable, then:

f(t) =

∞∑
n=−∞

cne
int ∀t.

Proof. The function f and the series have the same Fourier coefficients, and by the uniqueness
theorem, both functions must coincide.

Remark 1.5

This is particularly true if f is once continuously differentiable (i.e., f ∈ W 1,1).

Theorem 1.6 – Interpretation of Fejér’s Theorem

Every continuous 2π-periodic function can be uniformly approximated by trigonometric polyno-
mials.

Proof. This follows directly from the statement of Fejér’s theorem.

Theorem 1.7 – Weierstrass Approximation Theorem

Every continuous function on a compact interval g : [a, b] → R can be uniformly approximated
by polynomials, i.e., ∀ϵ > 0, there exists a polynomial p such that

max
x∈[a,b]

|p(x)− g(x)| < ϵ.

12 CHAPTER 1. FAST FOURIER TRANSFORM

Proof. Without loss of generality, assume that [a, b] = [−1, 1]. Set f(t) = g(x) for x = cos t, or
more precisely t = arccosx ∈ [0, π]. Next, extend f as an even function, i.e., f(−t) = f(t), and
note that f is continuous.

For even functions, we have c−n = cn, because:

c−n =
1

2π

∫ 2π

0

eintf(t) dt =
1

2π

∫ 0

−2π

e−inτf(−τ) dτ =
1

2π

∫ 2π

0

e−inτ f(−τ)︸ ︷︷ ︸
f(τ)

dτ = cn

due to the transformation of variables and the 2π-periodicity.

Furthermore, by Fejér’s theorem, we know:

n∑
j=−n

(
1− |j|

n+ 1

)
cje

ijt = c0 + 2

n∑
k=1

(
1− k

n+ 1

)
ck cos(kt).

We also know that the left-hand side converges uniformly to f(t). Since cos(k arccosx) = Tk(x),
the k-th Chebyshev polynomial, we obtain:

c0 + 2

n∑
k=1

(
1− k

n+ 1

)
ckTk(x) → g(x).

Remark 1.6

The convergence in the last theorem can be arbitrarily slow. It will be faster if the coefficients
decay rapidly, which is particularly the case when the function is frequently differentiable.

1.2 Discrete Fourier Transform

We consider finite sequences x = (x0, . . . , xN−1) ∈ CN periodically extended to arbitrary integer
indices (if needed). That is, we set xk = xℓ if k ≡ ℓ mod N .

Definition 1.3 – Discrete Fourier Transform

The mapping FN : CN → CN is defined by FNx = x̂ with

x̂k =

N−1∑
j=0

wk·j
N xj ,

where wN = ei
2π
N is the primitive N -th complex root of unity, i.e., wN

N = 1.

Remark 1.7

If N is clear from context, we simply write w for the root of unity.

Remark 1.8 – Computational Complexity

The direct computation of the discrete Fourier transform requires about N2 operations (mul-
tiplications and additions). We will later see that the Fast Fourier Transform (FFT) requires
about N log2 N operations if N = 2L.

1.2. DISCRETE FOURIER TRANSFORM 13

Lemma 1.1 – Orthogonality Relation of the Discrete Fourier Transform

It holds that:
N−1∑
k=0

wkℓ
N w̄km

N =

{
N, ℓ ≡ m mod N

0, otherwise

Proof. Let w̄ = w−1. For ℓ ≡ m,
N−1∑
k=0

1 = N.

Otherwise, it follows that

N−1∑
k=0

wkℓ
N w−km

N =

N−1∑
k=0

w
k(ℓ−m)
N =

1− (wℓ−m
N)N

1− wℓ−m
N

= 0.

Theorem 1.8 – Parseval’s Equation

Let CN be equipped with the Euclidean norm. Then we have:

1√
N

∥FNx∥ = ∥x∥, ∀x ∈ CN ,

i.e., this transformation is an isometry/unitary mapping. Explicitly, this means:

1

N

N−1∑
k=0

|x̂k|2 =

N−1∑
j=0

|xj |2.

Proof. We compute:

∥x̂∥2 =

N−1∑
k=0

x̂k
¯̂xk

=

N−1∑
k=0

N−1∑
ℓ=0

wkℓ
N xℓ

N−1∑
m=0

w̄km
N x̄m

=
∑
ℓ

∑
m

xℓx̄m

∑
k

wkℓ
N w̄km

N︸ ︷︷ ︸
=Nδlm

=N

N−1∑
ℓ=0

xℓx̄ℓ = N∥x∥2,

which proves the equality.

Notation 1.1 – Fourier Transform Matrix

The mapping FN : CN → CN is linear and represented by the matrix (wkj
N)N−1

k,j=0. Similarly, we
define:

F̄N : CN → CN , with matrix (w̄kj
N)N−1

k,j=0 = (w−kj
N).

Theorem 1.9 – Inverse Discrete Fourier Transform

We have:

F−1
N =

1

N
F̄N ,

14 CHAPTER 1. FAST FOURIER TRANSFORM

or explicitly,

xj =
1

N

N−1∑
k=0

w̄kj
N x̂k, for j = 0, . . . , N − 1.

Proof. From the orthogonality lemma, we know that FN · F̄N = NIN . Explicitly,

N−1∑
k=0

w̄kj
N

N−1∑
ℓ=0

wkℓ
N xℓ =

N−1∑
ℓ=0

xℓ

N−1∑
k=0

w̄kj
N wkℓ

N = Nxj .

Thus, dividing by N gives the result.

Definition 1.4 – Pointwise Product

For sequences x, y ∈ CN , the pointwise multiplication is defined as:

(x · y)k = xkyk.

Definition 1.5 – Convolution Multiplication

For N -periodic sequences x, y ∈ CN , we define the convolution product x ∗ y ∈ CN as:

(x ∗ y)k =

N−1∑
j=0

xk−jyj .

Theorem 1.10 – Convolution Theorem

The Fourier transform converts convolution into pointwise multiplication:

FN (x ∗ y) = (FNx) · (FNy).

Proof. We consider the m-th component of the left-hand side:

(FN (x ∗ y))m =
N−1∑
k=0

wmk
N

N−1∑
j=0

xk−jyj .

Using index shift k − j = ℓ:

N−1∑
j=0

N−1∑
ℓ=0

w
m(ℓ+j)
N xℓyj .

Since sequences are N -periodic,

N−1∑
j=0

wmj
N yj

N−1∑
ℓ=0

wmℓ
N xℓ = ŷmx̂m = (FNy) · (FNx),

proving the claim.

Corollary 1.1 – Properties of Convolution

Since pointwise multiplication is commutative and associative, convolution is also commutative
and associative.

1.3. FAST FOURIER TRANSFORM (FFT) 15

Corollary 1.2 – Direct Computation of Convolution

We have:

x ∗ y =
1

N
F̄N (FNx · FNy),

which provides an efficient way to compute convolution using the Fourier transform.

Remark 1.9 – Computational Effort for Convolution

A direct computation of the convolution requires approximately N2 multiplications and addi-
tions. With the FFT, we need N log2 N operations for the transformation, only N operations
for the pointwise multiplication, and another N log2 N operations for the inverse FFT. Thus,
using the FFT, we require only 3N log2 N + 2N operations.

1.3 Fast Fourier Transform (FFT)

Given a vector x = (x0, . . . , xN−1) ∈ CN , we aim to compute x̂ = FNx.

Theorem 1.11 – Reduction Formula

We split the vector x into two vectors u and v, where u contains the even indices and v the odd
indices:

x = (u0, v0, u1, v1, . . . , uN/2−1, vN/2−1) ∈ CN .

Then, for k = 0, . . . , N/2− 1, we have:

(FNx)k = (FN/2u)k + wk
N (FN/2v)k,

(FNx)k+N/2 = (FN/2u)k − wk
N (FN/2v)k.

Proof. We compute the k-th entry of FNx:

(FNx)k =

N−1∑
ℓ=0

wkℓ
N xℓ =

N/2−1∑
j=0

w
k(2j)
N uj +

N/2−1∑
j=0

w
k(2j+1)
N vj .

Since w2j
N = wj

N/2, this simplifies to:

(FNx)k =

N/2−1∑
j=0

wkj
N/2uj + wk

N

N/2−1∑
j=0

wkj
N/2vj = (FN/2u)k + wk

N (FN/2v)k.

Due to periodicity, we obtain the second equation using w
k+N/2
N = wk

Nw
N/2
N = −wk

N .

Remark 1.10

If FN/2u and FN/2v are known, we require N/2 multiplications and N additions to compute
FNx.

Remark 1.11 – Historical Note

This formula dates back to Cooley-Tukey (1965). Similar ideas were found by Danilson and
Lanzos (1942), Runge (1925), Gauss, and even Caesar’s ”divide et impera.”

Remark 1.12 – Algorithm Complexity

If N = 2L, we can recursively divide the vector L times until we obtain vectors of length 1. This
results in a computational cost of L ·N/2 multiplications, where L = log2 N .

16 CHAPTER 1. FAST FOURIER TRANSFORM

Theorem 1.12 – Computational Complexity of FFT

For N = 2L, computing FNx requires:

1. 1
2N log2 N complex multiplications,

2. N log2 N complex additions.

Remark 1.13 – Order of Elements

During the execution of the FFT algorithm, the order of elements is permuted. Using binary
representation, we obtain the order by reversing the binary digits:

Input (Decimal) Input (Binary) Output (Binary) Output (Decimal)
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Thus, the order is obtained by mirroring the binary digits.

Remark 1.14 – Comparison with Direct Computation

We summarize key values that highlight the advantage of FFT:

N N2 N log2 N Quotient
25 = 32 103 160 6.4
210 ≈ 103 106 104 100
220 ≈ 106 1012 2 · 107 50, 000

1.4 Approximation of Fourier coefficients, trigonometric in-
terpolation

We would like to clarify the relationship between the discrete and continuous Fourier transforms.
The Fourier coefficients for a 2π-periodic, continuous function f are given by:

f̂(n) = cn =
1

2π

∫ 2π

0

e−intf(t) dt.

We approximate the integral using the trapezoidal rule with step size h = 2π
N , obtaining:

f̂N (n) =
1

2π

(
h

2
e−in0f(0) + he−inhf(h) + · · ·+ he−in(N−1)hf((N − 1)h) +

h

2
e−inNhf(Nh)

)
.

Due to the periodicity, we have he−in0f(0) = he−inNhf(Nh), so the trapezoidal rule effectively
becomes the rectangular rule. Thus, we obtain:

f̂N (n) =
1

N

N−1∑
j=0

e−inj 2π
N f(tj) =

1

N

N−1∑
j=0

w−nj
N f(tj),

where tj = jh = j 2π
N . Therefore, f̂N (n) is N -periodic as a vector. This leads to the following

representation:
f̂N = F−1

N (f(tj))
N−1
j=0 ,

which can be computed using the Fast Fourier Transform (FFT).

1.4. APPROXIMATIONOF FOURIER COEFFICIENTS, TRIGONOMETRIC INTERPOLATION17

Theorem 1.13 – Aliasing Formula

Let (f̂(n))n∈Z be absolutely summable. Then,

f̂N (n)− f̂(n) =
∑

0̸=ℓ∈Z
f̂(n+ ℓN).

Proof. From the previous chapter, we know that if the Fourier coefficients are absolutely summable,
we have:

f(t) =

∞∑
k=−∞

f̂(k)eikt.

Now, consider:

f̂N (n) =
1

N

N−1∑
j=0

w−nj
N

∞∑
k=−∞

f̂(k)eikj
2π
N =

∞∑
k=−∞

f̂(k)
1

N

N−1∑
j=0

w−nj
N wkj

N ,

where wN = ei
2π
N . The inner sum can be simplified as follows:

1

N

N−1∑
j=0

w−njwkj =

{
1 if k = n mod N,

0 otherwise.

Thus, we obtain:

f̂N (n) =

∞∑
ℓ=−∞

f̂(n+ ℓN),

and for ℓ = 0, this reduces to f̂(n), which confirms the statement.

Corollary 1.3 – Error Estimation for the Numerical Fourier Coefficients

Let f be p-times continuously differentiable (with p ≥ 2) and 2π-periodic. Then, for |n| ≤ N
2 ,

we have:
|f̂N (n)− f̂(n)| ≤ C ·N−p.

Proof. From the previous section, we know that:

|f̂(n)| ≤ C0|n|−p,

with

C0 =
1

2π

∫ 2π

0

|f (p)(t)| dt.

On the other hand, using the aliasing formula, we have:

|f̂N (n)− f̂(n)| =
∑
ℓ̸=0

|f̂(n+ ℓN)| ≤
∑
ℓ ̸=0

C0 · |n+ ℓN |−p.

For |n| ≤ N
2 , we have |n+ ℓN | ≥ N

2 . So |n+ ℓN | < N for only one ℓ ̸= 0. This is

l =

{
−1 n > 0,

1 n < 0.

For every interval I = [N, 2N), [2N, 3N), · · · and (−2N,−N], (−3N,−2N], · · · there is exactly one
ℓ such that n+ ℓN ∈ I. This gives us the following in total:∑

ℓ ̸=0

|n+ ℓN |−p ≤ (N/2)−p + 2

∞∑
m=1

(mN)−p ≤ cp ·N−p,

where cp is a constant derived from the converging sums. Hence, C = C0cp and the result follows.

18 CHAPTER 1. FAST FOURIER TRANSFORM

Remark 1.15

For the special case n = 0, we obtain for the grid spacing h = 2π
N :

h

2π

N−1∑
j=0

f(tj)−
1

2π

∫ 2π

0

f(t) dt = O(hp).

Thus, the accuracy of the trapezoidal rule depends on the smoothness of the function, i.e., the
trapezoidal rule is very accurate for smooth and periodic integrands.

Theorem 1.14 – Trigonometric Interpolation

The trigonometric polynomial

fN (t) =

N
2∑

n=−N
2

′f̂N (n)eint

interpolates f at the points tj = j 2π
N for j = 0, 1, . . . , N − 1.

Proof. Due to the periodicity, we have (in particular eintj = wnj
N):

fN (tj) =

N−1∑
n=0

f̂N (n)wnj
N .

We have used that the left and right boundary terms are equal, so the
∑

′ term vanishes. This
formula means that

fN (tj))
N−1
j=0 = FN

(
f̂N (n)

)N−1

n=0
= FNF−1

N (f(tj))
N−1
j=0 = (f(tj))

N−1
j=0 .

Thus, fN (t) already interpolates the grid points tj .

Notation
∑

′ means that the first and the last term are each taken with the factor 1
2 , i.e., for our

sum we obtain:

N
2∑

n=−N
2

′f̂N (n) :=
1

2
f̂N

(
−N

2

)
+ f̂N

(
−N

2
+ 1

)
+ · · ·+ f̂N

(
N

2
− 1

)
+

1

2
f̂N

(
N

2

)
This is the interpolation at the nodes tj = j 2π

N .
It would also be permissible to form one of the following sums instead:

N
2∑

n=−N
2 +1

,

N
2 −1∑

n=−N
2

,

N
2 −1+k∑

n=−N
2 +k

Using this method, we could also prove the theorem. However, we will see that our variant is
the least oscillatory due to symmetry reasons.

Algorithm 1.1 – Trigonometric Interpolation

We assume that f is 2π-periodic. Then we proceed as follows:

1. Compute f(tj) for j = 0, . . . , N − 1 and tj = j · 2π
N .

2. Compute f̂N = F−1
N (f(tj))

N−1
j=0 using the FFT with a computational complexity of

O(N logN) operations.

3. Obtain the trigonometric interpolation polynomial as in the previous theorem.

1.5. INVERSE CONVOLUTION PROBLEM, REGULARIZATION, FILTERING 19

Theorem 1.15 – Error Estimate for Trigonometric Interpolation

If (f̂(n))n is absolutely summable, then:

|fN (t)− f(t)| ≤ 2
∑

|n|≥N
2

′|f̂(n)|

Proof. We use the aliasing formula and obtain:

|fN (t)− f(t)| =

∣∣∣∣∣∣
N
2∑

n=−N
2

′f̂N (n)eint −
∞∑

n=−∞
f̂(n)eint

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N
2∑

n=−N
2

′(f̂N (n)− f̂(n))eint −
∑

|n|≥N
2

′f̂(n)eint
∣∣∣∣∣∣

Using the aliasing formula:

=

∣∣∣∣∣∣
N
2∑

n=−N
2

′
∑
ℓ ̸=0

f̂(n+ ℓN)eint −
∑

|n|≥N
2

′f̂(n)eint
∣∣∣∣∣∣

≤
∑

|m|≥N
2

′|f̂(m)|+
∑

|n|≥N
2

′|f̂(n)|

≤ 2
∑

|n|≥N
2

′|f̂(n)|

which proves the theorem.

Remark 1.16

If f ∈ Cp with p ≥ 2, then it is well known that f̂(n) = O(|n|−p). Thus, we obtain: |fN (t) −
f(t)| = O(N−p+1).

1.5 Inverse Convolution Problem, Regularization, Filtering

Motivation (Problem Statement)
An input signal u = u(x) for x ∈ R enters a device, and a signal b is measured, which no longer
corresponds to the input signal.

We make the following assumptions:

1. u 7→ b is linear.

2. u 7→ b is shift-invariant.

We know that such mappings are convolutions.

Remark 1.17

This problem arises in many areas, such as image or signal processing.

Model Construction (Device Model)
We consider the following model:∫ ∞

−∞
a(x− y)u(y) dy + ε(x) = b(x)

where u(y) is the unknown input signal, b(x) is the observed signal, and the term a(x − y) rep-
resents the device function. The term ε(x) represents the noise or errors in the model, including

20 CHAPTER 1. FAST FOURIER TRANSFORM

measurement errors, rounding errors, and model errors. This noise is typically unknown, but we
may know an upper bound for it, so that |ε(x)| ≤ M pointwise or in the quadratic mean, i.e.∫∞
−∞ |ε(x)|2 dx ≤ M or similar. We aim to reconstruct the input signal u from the observed signal.

Remark 1.18 – Reduction of the problem

In general, a, u, and b have compact support, so that supp(a) = {x : a(x) ̸= 0}. After a variable
transformation, we can assume without loss of generality that:

supp(a) ⊆
[
−π

2
,
π

2

]
, supp(u) ⊆

[
−π

2
,
π

2

]
.

This implies:
supp(b− ε) ⊆ [−π, π]

since if b(x) ̸= ε(x), then ∃y such that a(x−y) ·u(y) ̸= 0, and thus x−y ∈
[
−π

2 ,
π
2

]
, and therefore

x ∈ [−π, π].

We now extend a, u, ε, and b to be 2π-periodic on R. This reduces the problem to:

1

2π

∫ π

−π

a(x− y)u(y) dy + ε(x) = b(x) for x ∈ [−π, π],

which we can express briefly as:
a ∗ u+ ε = b

or for the linear operator Au = a ∗ u, we have:

Au+ ε = b

Remark 1.19

The ”usual” solution method is to solve the linear system Au + ε = b in Rn by neglecting the
disturbance ε and solving Av = b using standard methods. Then the error v − u = A−1ε holds,
provided ∥A−1ε∥ ≤ ∥v∥, which is not necessarily true if the matrix is ill-conditioned.
Unfortunately, this is the case here.

Reminder (Convolution Theorem) It is known that: â ∗ u(n) = â(n)û(n)

Remark 1.20

For the Fourier coefficients, we have:

â(n)û(n) + ε̂(n) = b̂(n) for n ∈ Z

Thus,

û(n) =
b̂(n)

â(n)
− ε̂(n)

â(n)
= v̂(n)− ε̂(n)

â(n)

where v̂(n) solves â(n)û(n) = b̂(n).
However, since the Fourier coefficients of ε remain approximately constant, while the Fourier
coefficients of a decay rapidly (if a is smooth), the expression at the back will dominate the
term, leading to the result that

u(x) =

∞∑
n=−∞

û(n)einx =

∞∑
n=−∞

v̂(n)einx −
∞∑

n=−∞

ε̂(n)

â(n)
einx

For large n, we observe catastrophic error amplification, meaning the problem is ill-conditioned.
This is also referred to as a poorly posed problem, or an ill-posed problem.

1.5. INVERSE CONVOLUTION PROBLEM, REGULARIZATION, FILTERING 21

Remark 1.21 – Alternative Approach (Minimization Problem)

We do not want to solve Au = b, but rather we want to minimize ∥Au−b∥ ≤ ∥ε∥, i.e., if ∥ε∥ ≈ δ,
we require that ∥Au− b∥ ≤ ∥δ∥.
In general, there are infinitely many such u that satisfy this. We wish to choose u such that
∥u′′∥ is minimal (e.g., using cubic splines). Alternatively, we might minimize ∥u∥. Thus, we are
looking for the smoothest or smallest possible u, which leads to a minimization problem.

Remark 1.22

We assume that, unless stated otherwise, we consider the L2-norm, i.e.

∥f∥ = ∥f∥L2 :=

(
1

2π

∫ π

−π

|f(x)|2 dx
)1/2

.

Theorem 1.16 – General Form of the Minimization Problem

We want to minimize ∥Lu∥ and assume that L is linear, e.g., Lu = u′′. Additionally, we require
the constraint ∥Au− b∥ ≤ δ.
The minimum is achieved for ∥Au− b∥ = δ.

Proof. Assume this is not the case, i.e., ∥Lu∥ is minimal for some u with ∥Au− b∥ < δ. Consider
ũ = (1− ρ)u for some ρ > 0. Since L is linear, we have:

∥Lũ∥ = (1− ρ)∥Lu∥ < ∥Lu∥

and for ũ, we get:

∥Aũ− b∥ = ∥(1− ρ)(Au− b)− ρb∥ ≤ (1− ρ)∥Au− b∥+ ρ∥b∥ ≤ δ

This leads to a contradiction for sufficiently small ρ, so the minimum must occur for ∥Au − b∥ =
δ.

Remark 1.23

In practice, there are often additional constraints, such as considering only solutions that are
monotonic or positive.

Remark 1.24

It is a reasonable assumption that ∥b∥ > δ, otherwise, the observed signal would be weaker than
the noise. This directly implies that u ̸= 0, and hence the problem cannot be trivially solved.

Definition 1.6 – Tikhonov Regularization

We consider a fixed α > 0 as a regularization parameter. We solve the minimization problem
without the constraint:

∥Au− b∥2 + α∥Lu∥2 = min

As α → 0, we get ∥Au − b∥ = 0, but ∥Lu∥ becomes arbitrarily large. As α → ∞, we get
∥Lu∥ = 0, but ∥Au − b∥ becomes arbitrarily large. The optimal α should be chosen so that
∥Au − b∥ ≈ ∥ε∥, if ε is known. Otherwise, it must be determined empirically until the result
”looks good”.

Remark 1.25

We now clarify the connection between the minimization and regularization problems: We re-
strict ourselves to a finite-dimensional problem, i.e., b ∈ Rn and u ∈ Rn. Then A,L are matrices,

22 CHAPTER 1. FAST FOURIER TRANSFORM

and ∥ · ∥ denotes the Euclidean norm. We have:

∥Lu∥22 = uTLTLu, ∥Au− b∥22 = (Au− b)T (Au− b) = uTATAu− 2uTAT b+ bT b.

The general solution f(u) = min and g(u) = 0 satisfies:

f ′(u) + g′(u)Tλ = 0, g(u) = 0,

where λ is a Lagrange multiplier. We then obtain the following two conditions:

2LTLu+ (2ATAu− 2AT b)Tλ = 0, λ ∈ R, ∥Au− b∥22 − δ2 = 0.

Thus, we have (LTL + λATA)u = λAT b. For a fixed λ, this is the solution to a minimization
problem without constraints:

∥Lu∥22 + λ∥Au− b∥22 = min, so for α =
1

λ
, we have : ∥Au− b∥22 + α∥Lu∥22 = min .

Theorem 1.17 – Tikhonov Regularization

Let Au = a ∗ u and Lu = u(p). The solution to the minimization problem for α > 0 as a given
regularization parameter is:

∥a ∗ u− b∥22 + α∥u(p)∥22 = min,

for u a 2π-periodic function with a square-integrable p-th derivative, and is given by the Fourier
coefficients:

û(n) =

{
|â(n)|2

|â(n)|2+αn2p · b̂(n)
â(n) if â(n) ̸= 0,

0 if â(n) = 0.

We define the regularization filter Φα(n):

Φα(n) :=
|â(n)|2

|â(n)|2 + αn2p
.

Proof. By the Parseval formula, the regularization problem is equivalent to:

∞∑
n=−∞

(∣∣∣â(n)û(n)− b̂(n)
∣∣∣2 + αn2p|û(n)|2

)
︸ ︷︷ ︸

=:Λn

= min,

where we have used the convolution theorem and the fact that û(p)(n) = (in)pû(n). The expression
becomes minimal if each individual summand is minimized.

For the n-th summand, which we define as Λn, we compute:

Λn = |â(n)|2|û(n)|2 − â(n)û(n)b̂(n)− â(n)û(n)b̂(n) + |b̂(n)|2 + αn2p|û(n)|2

=
(
|â(n)|2 + αn2p

)︸ ︷︷ ︸
=:r

· |û(n)|2︸ ︷︷ ︸
=:z2

−2Re

û(n)︸︷︷︸
=:z

â(n) · b̂(n)︸ ︷︷ ︸
=:s

+ |b̂(n)|2.

Thus, we must have:

r|z|2 − 2Re(z̄s) = min, or for q =
s

r
then applies |z|2 − 2Re(z̄q) = min

but due to quadratic completion it applies:

|z|2 − 2Re(z̄q) ≥ |z|2 − 2|z| · |q|+ |q|2 − |q|2 ≥ −|q|2

i.e.

û(n) =
|â(n)|2

|â(n)|2 + αn2p

b̂(n)

â(n)
.

1.6. NUMERICAL DECONVOLUTION, SMOOTHING OF MEASURED DATA 23

1.6 Numerical Deconvolution, Smoothing of Measured Data

Remark 1.26 – Motivation (Problem Statement)

We have the same assumptions as in the previous section and the problem a ∗ u+ ϵ = b is given,
where a, u, and b are 2π-periodic and ϵ ∈ L2. We are given the conditions:

∥u(p)∥L2 = min, ∥a · u− b∥L2 ≤ δ.

Now, b is measured at discrete points xj =
2π
N j, so we replace b with the trigonometric interpo-

lation polynomial bN , leading to the following conditions:

∥u(p)
N ∥L2 = min, ∥a ∗ uN − bN∥L2 ≤ δ.

Definition 1.7 – Regularization

We choose α > 0 and obtain the regularization problem:

∥a ∗ uN − bN∥2L2 + α∥u(p)
N ∥2L2 = min

among all trigonometric polynomials uN (x):

uN (x) =

N/2∑
n=−N/2

′ ûN (n)einx.

From the theorem in Section 5, we know that:

ûN (n) = Φα(n)
b̂N (n)

â(n)
, n = −N

2
, . . . ,

N

2
− 1.

Algorithm 1.2 – Practical Computation

We are given b(xj) for j = 0, . . . , N − 1, as well as a(x) or â(n).

1. Compute with the FFT, as in Section 4:(
b̂N (n)

)N
2 −1

n=−N
2

=
1

N
FN (b(xj))

N−1
j=0

with a total of N log2 N operations.

2. The Fourier coefficients of the apparatus function â(n) are either given (often only â(n) is
provided, not a), or we approximate âM (n) with M ≥ N , potentially even M ≫ N .

3. Then calculate:

ûN (n) =
â(n)b̂N (n)

|â(n)|2 + αn2p
, n = −N

2
, . . . ,

N

2
− 1.

4. Next, compute the discrete Fourier transform using FFT:

(uN (xj))
N−1
j=0 = FN (ûN (n))

N
2 −1

n=−N
2

.

with N log2 N operations.

24 CHAPTER 1. FAST FOURIER TRANSFORM

Remark 1.27 – Choice of Regularization Parameter

We want to know how to determine or approximate the regularization parameter α. If the
estimate (this term is also called the variance):

δ ≈

 1

N

N−1∑
j=0

|ε(xj)|2
 1

2

= ∥ε∥L2

is known, we start with some α and compute (using the Parseval formula):

d2α = ∥a ∗ uN − bN∥2L2 =

N
2∑

n=−N
2

′|â(n)ûN (n)− b̂N (n)|2 =

N
2∑

n=−N
2

′(1− Φα(n))
2|b̂N (n)|2.

We then choose α such that dα ≈ δ. Note that α 7→ dα is monotonically increasing, so this
process can be iterated relatively easily. At the optimal α, we compute ûN (n), and then, using
FFT, obtain uN (xj).

Remark 1.28

If the variance is unknown, the procedure makes no sense. However, statistical methods can
determine an optimal regularization parameter λ. This can be found in the literature under the
term “generalized cross-validation.”

Remark 1.29 – Smoothing of Data

We have measured values b(xj) and a variance of the measurement error that is approximately
δ. We are looking for a trigonometric polynomial uN with:

∥uN − bN∥2L2 =
1

N

N−1∑
j=0

|uN (xj)− b(xj)|2 ≤ δ2 = min, ∥u(p)
N ∥L2 = min .

Using our formula, we can compute this directly. For the special case â(n) = 1, we have a∗u = u,
which corresponds to convolution with the Dirac delta function. For p = 2, we obtain:

ûN (n) =
1

1 + αn4
b̂N (n).

We note that the high-frequency components of b̂N (n) (for large n) are filtered out by this
formula, which results in smoothing. By the inverse Fourier transform, we eventually obtain the
desired uN .

Remark 1.30 – Approach for Non-Periodic Data

If the data are not periodic, we subtract a fitting line such that it fluctuates around a level and
then extend it periodically.

Remark 1.31

An alternative approach would be to smooth the data using splines instead of Fourier transforms.

1.6. NUMERICAL DECONVOLUTION, SMOOTHING OF MEASURED DATA 25

Remark 1.32 – Differentiation of noisy data

We want to find the derivative of the data, i.e., u = b′. Thus, we have:∫ x

0

u(t) dt = b(x)− b(0).

We have û(n) = inb̂(n), so:
1

in︸︷︷︸
=:â(n)

û(n) = b̂(n)

This leads to a new minimization problem:

N
2 −1∑

n=−N
2

∣∣∣∣ 1in ûN (n)− b̂N (n)

∣∣∣∣2 ≤ δ2, ∥uN
′′∥2L2 = min .

For the special case â(n) = 1
in , we get:

ûN (n) =
n−2

n−2 + αn4
inb̂N (n) =

in

1 + αn6
b̂N (n).

26 CHAPTER 1. FAST FOURIER TRANSFORM

Chapter 2

Eigenvalue Problems

In this chapter, n denotes a positive integer.

Review – Left/right eigenvectors

Let A ∈ Cn×n. If there is (λ, v) ∈ C× Cn such that Av = λv, then λ is called an eigenvalue of
A and v an eigenvector of A associated to λ. If there is (κ, u) ∈ C × Cn such that u∗A = κu∗,
then κ is also called an eigenvalue of A and u an eigenvector of A associated to κ. When it is
not specified, an eigenvector usually refers to a right eigenvector.

Question
Why don’t we need to distinguish left and right eigenvalues?

Answer
Due to the fact that the determinant of a matrix B is equal to the determinant of its transpose,
by taking B = A − λI we get χA(λ) = det(A − λI) = det(AT − λI) = χAT (λ), where χA is
the characteristic polynomial of A. Notice that u∗A = κu∗ ⇐⇒ AT ū = κū, hence κ is an
eigenvalue of AT . In other words, κ is also an eigenvalue of A. Hence, all left eigenvalues are
right eigenvalues, and there is no need to distinguish them.

Note
The eigenvectors are conventionally taken to be of unit ℓ2 norm, since for any c ∈ C,

Av = λv ⇐⇒ A(cv) = λ(cv).

Taking c = 1/∥v∥2, the eigenvector u = cv is of unit ℓ2 norm.

In this chapter, we will generally assume that eigenvectors are normalized.

Review – Diagonalization

A matrix A ∈ Cn×n is said to be diagonalizable if there is an invertible matrix P ∈ Cn×n and a
diagonal matrix Λ ∈ Cn×n such that

P−1AP = Λ.

2.1 Fundamentals

Motivation
There are numerous applications where eigenvalues are required:

1. In mechanics (physics), for example, one is interested in the natural vibrations of membranes.
If u(x) represents the deflection on a domain Ω, then we require that

−∆u = λu in Ω, u = 0 on ∂Ω.

27

28 CHAPTER 2. EIGENVALUE PROBLEMS

For a grid over Ω, we obtain the discretization

Av = λv.

2. In biology, the Lotka-Volterra predatorprey model is frequently used to describe the dynamics
of two interacting species:

dx

dt
= αx− βxy

dy

dt
= −γy + δxy,

where x (resp. y) is the population density of prey (resp. predator). The system’s equilibrium
is obtained when dx

dt = dy
dt = 0, which yields two points:

{x = 0, y = 0} or

{
x =

γ

δ
, y =

α

β

}
.

The stability of fixed points is studied by looking at eigenvalues of a certain matrix.

• {x = 0, y = 0}: there are always one positive and one negative eigenvalues, hence the
equilibrium is unstable

•
{
x = γ

δ , y = α
β

}
: there are always two complex conjuguate eigenvalues, hence the pop-

ulation oscillates with time around that point, and the system is stable in a certain
sense.

3. Search engines: “The 25,000,000,000 Dollar Eigenvalue Problem”, which we will discuss
later in the context of Google’s mechanism.

2.1.1 Review (Characteristic Polynomial)

Review – Characteristic polynomial

For A ∈ Cn×n, the characteristic polynomial χA of A is defined by χA(λ) := det(A− λI).

The condition Av = λv is equivalent to det(A − λI) = χA(λ) = 0. One might consider first
computing the characteristic polynomial and then finding its roots to obtain the eigenvalues.

Note
The equivalence is shown as follows:

(A− λI)v = 0 for some v ̸= 0 ⇐⇒ (A− λI) is singular ⇐⇒ det(A− λI) = 0.

Example 2.1 – Poor Conditioning

Let A = diag(10, 11, . . . , 16) be a 7 × 7 matrix. Here, it is clear what the eigenvalues are, and
the characteristic polynomial is:

χA(λ) = (10− λ)(11− λ) · · · (16− λ) = −λ7 + 91λ6 − 3535λ5 + . . .− 31813200λ+ 57657600.

If one computes the roots of χA in single precision (i.e. eps = 10−8), the resulta is:

9.97, 11.31− 0.30i, 11.37 + 0.33i, 13.47− 0.76i, 13.57 + 0.76i, 15.51− 0.09i, 15.80 + 0.06i.

This does not correspond to the actual eigenvalues. The problem is that computing the roots of
a polynomial from its coefficients is a poorly conditioned problem.

aResults obtained via the Julia programming language with Float32 precision (giving between 6 and 9 digits
of precision)

2.1. FUNDAMENTALS 29

Remark 2.1 – How to explain poor conditioning of the root-finding problem?

Let

p(λ) =

n∑
k=0

akλ
k,

and we suppose its roots are simple (i.e. they are all distinct). The coefficients {ak} are the
“real” ones, but numerically they are only known up to a certain precision η: the computer only
sees coefficients {ak(1 + εk)} for some |εk| ≤ η, and the polynomial seen by the computer is

p(λ, η) =

n∑
k=0

(ak + akεk)λ
k =

n∑
k=0

ak + ak
εk
η︸ ︷︷ ︸

=:bk

η

λk = p(λ) + q(λ)η

with q(λ) =
∑n

k=0 bkλ
k and |bk| ≤ |ak|. We study the roots λ(η) of p(λ, η) = p(λ) + ηq(λ) as

a function of η. Let λ(0) = λ∗ be a simple root of p. We consider the differentiable function
η 7→ λ(η) defined by p(λ(η), η) = 0 for all η with |η| ≤ η0. It exists and is unique by the implicit
function theorem, hence:

∂p

∂λ
(λ(η), η)︸ ︷︷ ︸

p′(λ(η))λ′(η)+O(η)

+
∂p

∂η
(λ(η), η)︸ ︷︷ ︸
q(λ(η))

= 0.

Thus,

λ′(η) ≈ − q(λ(η))

p′(λ(η))
, λ(η) ≈ λ∗ + ηλ′(0),

and the relative error is:

|λ(η)− λ∗|
|λ∗|

≈ |ηλ′(0)|
|λ∗|

≈ |η| ·
∣∣∣∣ q(λ∗)

λ∗p′(λ∗)

∣∣∣∣ .
The term

∣∣∣ q(λ∗)
λ∗p′(λ∗)

∣∣∣ can become very large. Coming back to Example 2.1, we have

q(λ) =
1

η

(
−ε0λ

7 + 91ε1λ
6 + · · · − 31813200ε6λ+ 57657600ε7

)
,

and thus for λ∗ = 10 we obtain

|q(λ∗)| ≤ 1

η

(
|ε0(λ∗)7|+ |91ε1(λ∗)6|+ · · ·+ |31813200ε6λ∗|+ |57657600ε7|

)
≤ |(λ∗)7|+ |91(λ∗)6|+ · · ·+ |31813200λ∗|+ |57657600|
≤ 107 + 91 · 107 + · · ·+ 31.8132 · 107 + 5, 76576 · 107

≈ 108,

and |p′(λ∗)| = 720 ≈ 103. So the relative error is η · 104, which means that we lose about four
significant digits in the decimal expansion of the roots. Therefore, it is numerically unreasonable
to compute the coefficients of the characteristic polynomial with a coarse precision.

Proposition 2.1 – Obtaining eigenvectors by similarity transformations

Let A ∈ Cn×n, and T ∈ Cn×n invertible. If B = T−1AT , then

Av = λv ⇐⇒ TBT−1v = λv ⇐⇒ B(T−1v) = λ(T−1v).

Thus, B and A have the same eigenvalues, and v is an eigenvector of A if and only if T−1v is an
eigenvector of B.

30 CHAPTER 2. EIGENVALUE PROBLEMS

Definition 2.1 – Unitary/orthogonal matrix

The matrix U ∈ Cn×n is unitary if U∗U = UU∗ = I, where U∗ = UT . In other words, U−1 = U∗.
If U is real, then U∗ = UT and U is said to be orthogonal.

Exercise
Let U1, . . . , Uk ∈ Cn×n unitary matrices. Show that V = U1 · · ·Uk is a unitary matrix.

Answer
We have V ∗ = U∗

k · · ·U∗
1 hence, owing to the unitary character of each matrix Uℓ,

V ∗V = U∗
k · · ·U∗

1U1 · · ·Uk = U∗
k · · ·U∗

2U2 · · ·Uk = · · · = I,

and

V V ∗ = U1 · · ·UkU
∗
k · · ·U∗

1 = U1 · · ·Uk−1U
∗
k−1 · · ·U∗

1 = · · · = I.

Theorem 2.1 – Schur’s normal form (1909)

Let A ∈ Cn×n, there is a unitary matrix U such that

U∗AU =

λ1 ⋆ . . . ⋆

0 λ2
. . .

...
...

. . .
. . . ⋆

0 . . . 0 λn

is an upper triangular matrix. This form is called Schur’s normal form.

Proof. The characteristic polynomial χA(λ) has a root λ1 ∈ C, which is an eigenvalue of A. Thus,
there exists an eigenvector 0 ̸= v1 ∈ Cn such that Av1 = λ1v1. We can assume without loss of
generality that ∥v1∥2 = 1. We now construct (using Gram-Schmidt) a matrix V1 = (v1, v2, . . . , vn)
with v2, . . . , vn chosen so that v1, v2, . . . , vn form an orthonormal basis (ONB) of Cn. In other
words, V1 is a unitary matrix.

We now consider

AV1 = (Av1, Av2, . . . , Avn) = V1

(
λ1 ⋆

0 Â

)
We proceed in the same way with the matrix Â ∈ C(n−1)×(n−1): there exists an eigenvalue λ2 ∈ C
of Â and an associated unit eigenvector v̂2, so one can construct an ONB of Cn−1 by the Gram-
Schmidt procedure. This yields a unitary matrix V2 ∈ C(n−1)×(n−1) such that

ÂV2 = V2

(
λ2 ⋆

0
ˆ̂
A

)
⇐⇒ Â = V2

(
λ2 ⋆

0
ˆ̂
A

)
V ∗
2 .

Hence,

AV1 = V1

λ1 ⋆

0 V2

(
λ2 ⋆

0
ˆ̂
A

)
V ∗
2

 = V1

(
1 0
0 V2

)λ1 ⋆ ⋆
0 λ2 ⋆

0 0
ˆ̂
A

(1 0
0 V ∗

2

)
.

Finally, since

(
1 0
0 V ∗

2

)
is a unitary matrix, we get

AV1

(
1 0
0 V2

)
= V1

(
1 0
0 V2

)λ1 ⋆ ⋆
0 λ2 ⋆

0 0
ˆ̂
A

 .

2.1. FUNDAMENTALS 31

By repeating this process, we get a matrix U ∈ C(n−1)×(n−1) of the form

U = V1

(
1 0
0 V2

)1 0 0
0 1 0
0 0 V3

 . . .

1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 1 0
0 0 Vn

 ,

where each matrix Vk ∈ C(n−k+1)×(n−k+1) is unitary. The matrix U is unitary as a product of
unitary matrices, and it satisfies

AU = U

λ1 ⋆ . . . ⋆

0 λ2
. . .

...
...

. . .
. . . ⋆

0 . . . 0 λn

The claimed result is obtained after left-multiplying by U∗.

Review 2.1 – Hermitian and symmetric matrices

A matrix A ∈ Cn×n is said to be Hermitian if A∗ = A and skew-Hermitian if A∗ = −A, where
A∗ = ĀT . A matrix A ∈ Rn×n is said to be symmetric if AT = A, and skew-symmetric if
AT = −A.

Note
In some contexts, an Hermitian/symmetric matrix can also be called self-adjoint when seen as a
linear operator.

Definition 2.2 – Normal matrix

A matrix A is normal if AA∗ = A∗A (when A ∈ Cn×n) or if AAT = ATA (when A ∈ Rn×n).

Lemma 2.1

A normal upper triangular matrix is diagonal.

Proof. Let R ∈ Cn×n a normal upper triangular matrix

R =

r11 . . . r1,n
0
...
0

R1

 ,

with R1 ∈ C(n−1)×(n−1) an upper triangular matrix. Since R is normal, R∗R = RR∗ and we get

r1,1 0 . . . 0
...

r1,n
R∗

1

r1,1 . . . r1,n
0
...
0

R1

 =

r1,1 . . . r1,n
0
...
0

R1

r1,1 0 . . . 0

...
r1,n

R∗
1

 ,

i.e.
|r1,1|2 r1,1r1,2 . . . r1,1r1,n
r1,2r1,1

...
r1,nr1,1

(r1,i+1r1,j+1)
n−1
i,j=1 +R∗

1R1

 =

∑n

j=1 |r1,j |2
(
r1,2 . . . r1,n

)
R∗

1

R1

r1,2
...

r1,n

 R1R
∗
1

32 CHAPTER 2. EIGENVALUE PROBLEMS

The component at index (1, 1) yields |r1,1|2 =
∑n

j=1 |r1,j |2, i.e. r1,j = 0 for j = 2, . . . , n. Hence,

|r1,1|2 0 . . . 0

0
...
0

R∗
1R1

 =

|r1,1|2 0 . . . 0

0
...
0

R1R
∗
1

 ,

i.e. the matrix R1 is normal. In other words, the first row of a normal upper triangular matrix
has all its off-diagonal terms equal to zero. Since R1 is also a normal upper triangular matrix, by
induction we obtain that R is a diagonal matrix.

Theorem 2.2 – Spectral theorem

A matrix A ∈ Cn×n is normal if and only if there is a unitary U ∈ Cn×n such that

U∗AU =

λ1 0
. . .

0 λn

 .

Proof. [⇒] The Schur normal form of A yields a unitary matrix U and an upper triangular matrix
R such that U∗AU =: R. Since A is normal,

R∗R = U∗A∗UU∗AU = U∗A∗AU = U∗AA∗U = U∗AUU∗A∗U = RR∗.

The matrix R is normal and upper triangular, hence diagonal.

[⇐] One has A = U diag(λ1, . . . , λn)U
∗, thus

A∗A = U diag(λ1, . . . , λn)U
∗U diag(λ1, . . . , λn)U

∗ = U diag(|λ1|2, . . . , |λn|2)U∗,

and

AA∗ = U diag(λ1, . . . , λn)U
∗U diag(λ1, . . . , λn)U

∗ = U diag(|λ1|2, . . . , |λn|2)U∗.

The matrix A is then normal.

Question
Show that the λj in the spectral theorem are the eigenvalues of A.

Answer
Let κ an eigenvalue of A, it is a root of the characteristic polynomial χA: χA(κ) = 0. On the one
hand

det(U∗AU − κI) = det(U∗AU − κU∗U) = det(U∗)χA(κ) det(U) = χA(κ),

where the last equality is due to U being unitary hence det(U∗) det(U) = det(U−1) det(U) = 1. On
the other hand,

det(U∗AU − κI) = det(diag{λ1 − κ, . . . , λn − κ}).

Thus, κ is a root of χA if and only if det(diag{λ1 − κ, . . . , λn − κ}) = 0. The determinant of a
diagonal matrix is equal to the product of its diagonal elements, hence it is zero if and only if at
least one element is zero, i.e. if there is a j such that κ = λj. This shows sp(A) ⊂ {λ1, . . . , λn}.
It is clear that {λ1, . . . , λn} ⊂ sp(A), since χA(λj) = det(U∗AU − λjI) = 0.

2.2. CONDITIONING OF THE EIGENVALUE PROBLEM 33

Theorem 2.3 – Jordan normal form

For every A ∈ Cn×n, there is an invertible matrix T such that

T−1AT = J =

Jn1(λ1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Jnk

(λk)

 ,

with λk the eigenvalues of A and nk ∈ N∗. The Jordan blocks are given by

Jm(λ) =

λ 0 0

1 λ
. . .

...

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 λ

∈ Cm×m.

The number of Jordan blocks associated to a given λ is given by dimker(A− λI), and the sum
of the sizes of all Jordan blocks associated to λ is given by its algebraic multiplicity (i.e. the
multiplicity of λ as a root of χA).

Proof. Linear Algebra II.

Remark 2.2

On the sub-diagonal of a Jordan block, there can be entries ε ̸= 0 instead of ones. Sometimes,
the ones of the sub-diagonal are instead on the sup-diagonal.

2.2 Conditioning of the Eigenvalue Problem

Motivation
Let A = (aij) be a given matrix. Due to rounding errors, we can only work with a perturbed matrix

Ã = (ãij) such that ãij = aij(1+ εij) with |εij | ≤ η, where η > 0 is the numerical precision. Thus,
we can write:

Ã = A+ η · C, cij = aij
εij
η
, |cij | ≤ |aij |.

We consider A(η) = A+ ηC for small η. We want to find an estimate for the eigenvalues like:

|λ(η)− λ(0)| ≤ const. · η.

Is this even possible, and if so, with which constant? We will see with the following theorem
that this depends on a constant that depends on A.

Lemma 2.2

Let A ∈ Cn×n and λ ∈ C a simple root of χA. Let u, v ∈ Cn be respectively left and right
eigenvectors of A associated to λ. Then

u∗v ̸= 0.

Proof. (Done in Exercise). Since λ is a simple root of χA, its algebraic multiplicity is one. With
respect to the Jordan form, it means that the sum of the sizes of all Jordan blocks associated to λ
is one. Hence, the Jordan form of A is

T−1AT =

(
λ 0
0 J ′

)
,

34 CHAPTER 2. EIGENVALUE PROBLEMS

where J ′ ∈ C(n−1)×(n−1) is a matrix in Jordan form and T ∈ Cn×n is an invertible matrix. Since

AT = T

(
λ 0
0 J ′

)
and T−1A =

(
λ 0
0 J ′

)
T−1,

we deduce that the first column of T is a multiple of v, and that the first row of T−1 is a multiple
of u∗. Thus, there are nonzero complex coefficients α, β such that

v = αT·,1 and u = β(T−∗)·,1.

We can write T = (v/α, T1) and T−∗ = (u/β, Z1) for some matrices T1, Z1 ∈ Cn×(n−1). By
definition,

I = T−1T = (T−∗)∗T =

(
u∗/β̄
Z∗
1

)(
v/α T1

)
=

(
u∗v/(αβ̄) u∗T1/β̄
Z∗
1v/α Z∗

1T1

)
.

Looking at the component at index (1, 1), we get u∗v = αβ̄ ̸= 0.

Definition 2.3 – Condition number of an eigenvalue

Let A ∈ Cn×n and λ ∈ C an eigenvalue. Let u (resp. v) denote a left (resp. right) eigenvector
associated to λ. The quantity 1/|u∗v| is called the condition number of the eigenvalue λ.

A “well-conditioned” matrix means that small perturbations only result in small changes. For
a given matrix A ∈ Cn×n, if the condition number of an eigenvalue λ is large it means that small
perturbations of A may result in large perturbations of λ. The condition number of an eigenvalue
can be understood as a measure of the “continuity” of this eigenvalue depending on the size of the
perturbation.

Theorem 2.4 – Error estimate for a simple eigenvalue

Let A ∈ Cn×n and λ a simple root of the characteristic polynomial χA. For small ε, an eigenvalue
of A(ε) = A+ εC satisfies the following relation:

λ(ε) = λ+ ε
u∗Cv

u∗v
+O(ε2)

where v is an eigenvector of A associated to λ and u is a left eigenvector of A associated to λ.

Proof. Using Lemma 2.2, we know that u∗v ̸= 0. We start by showing that there is a differentiable
eigenvalue λ(ε) and an associated normalized eigenvector v(ε) depending on ε such that λ(0) = λ
and v(0) = v. This is done using the implicit function theorem.

For that, we consider the function

F (ε, κ, w) :=

(
(A(ε)− κI)w

w∗w − 1

)
.

It is a C1 function of the three variables, and F (0, λ, v) = 0 by definition of λ and v. We compute
the Jacobian of F with respect to (κ,w), evaluated at the point (ε = 0, κ = λ,w = v):

(
D(κ,w)F

)
(0, λ, v) = (DκF,Dw1F, . . . ,DwnF) (0, λ, v) =

(
−v A− λI
0 v∗

)
.

For the derivatives with respect to a complex variable z = x+ iy ∈ C, we have used the Wirtinger

derivative: ∂
∂z = 1

2

(
∂
∂x − ∂

∂y

)
. We now show that this matrix is nonsingular, i.e. that its kernel

is the zero element. Assume the matrix is singular, then one can find (x, y) ∈ (C×Cn) \ {0} such
that (

−v A− λI
0 v∗

)(
x
y

)
= 0 ⇐⇒

{
− vx+ (A− λI)y = 0

v∗y = 0

2.2. CONDITIONING OF THE EIGENVALUE PROBLEM 35

Left-multiply the first equation by u∗ to obtain

−xu∗v + u∗(A− λI)y = 0.

However, since u∗(A − λI) = 0 and u∗v ̸= 0, we get x = 0. The equation (A − λI)y = 0 means
y = ker(A− λI). But since λ is an eigenvalue of algebraic multiplicity one, it is also of geometric
multiplicity one which means that dimker(A − λI) = 1. Since the kernel is a C-linear space and
we know v ∈ ker(A − λI), we obtain ker(A − λI) = span{v} = {αv : α ∈ C}. Therefore there is
c ∈ C such that y = cv. The equation v∗y = 0 yields c = 0 since v∗v = 1. Hence, there is no
(x, y) ∈ (C× Cn) \ {0} such that (

−v A− λI
0 v∗

)(
x
y

)
= 0.

In other words, the matrix
(
D(κ,w)F

)
(0, λ, v) is invertible, i.e. its determinant is nonzero. The

implicit function theorem now applies, and we get the existence of a unique differentiable function
φ(ε) = (λ(ε), v(ε)) ∈ C× Cn such that F (ε, λ(ε), v(ε)) = 0 for |ε| small enough, i.e.

(A(ε)− λ(ε)I) v(ε) = 0, ∥v(ε)∥2 = 1, v(0) = v, λ(0) = λ.

We have A(ε)v(ε) = λ(ε)v(ε), i.e.

(A+ εC)(v + εv′(0) +O(ε2)) = (λ+ ελ′(0) +O(ε2))(v + εv′(0) +O(ε2)).

We multiply this out and compare the powers of ε:

ε0 : Av = λv, ε1 : Cv +Av′(0) = λv′(0) + λ′(0)v.

We obtain: (A− λI)v′(0) = −Cv+ λ′(0)v. By left multiplying with u∗ and using u∗(A− λI) = 0,
we obtain:

0 = −u∗Cv + λ′u∗v ⇒ λ′ =
u∗Cv

u∗v
.

Remark 2.3

The error estimate for the (right) eigenvectors can be shown to be

vj(ε) = vj + ε

n∑
i=1,i̸=j

1

λj − λi

u∗
iCvj
u∗
i vi

vi +O(ε2).

This is done in an Exercise.

Example 2.2

1. If A is normal, then the left and right eigenvectors are identical, because there is a U
unitary (by the spectral theorem) such that:

U∗AU = diag(λ1, . . . , λn).

After multiplying by U∗ on the right, we get U∗A = diag(λ1, . . . , λn)U
∗, i.e. the left

eigenvectors are in the matrix U . If we multiply instead by U on the left, we get
AU = U diag(λ1, . . . , λn), i.e. the right eigenvectors are in the matrix U . Hence, left
and right eigenvectors agree. When the eigenvalues are all simple roots of the characteris-
tic polynomial, we get

1

|u∗v|
= 1

for all eigenvalues, if u and v are normalized. In this case, the problem is well-conditioned.

36 CHAPTER 2. EIGENVALUE PROBLEMS

We could even show here that not only

|λ(ε)− λ| ≤ |ε| · |v∗Cv|

holds, but also
|λ(ε)− λ| ≤ |ε|∥C∥2.

2. If A is not normal, u∗v can be arbitrarily small, e.g.,

A =

(
1 α
0 2

)
, λ = 1, v =

(
1
0

)
, u∗ =

1√
1 + α2

(
1 −α

)
.

For a very large α, u is almost the second unit vector, and then:

u∗v =
1√

1 + α2
→ 0.

Here, the problem would be very poorly conditioned.

Remark 2.4 – Consideration for multiple eigenvalues

(Details given in the tutorials). We cannot transfer the proof because the conditions for the
implicit function theorem are not guaranteed. We consider here as an example the matrix with
multiple Jordan blocks:

A =

λ 1 0 . . . 0

0 λ
. . .

. . .
...

...
. . .

. . .
. . . 0

... . . .
. . . λ 1

0 0 λ

which represents a Jordan block of size n × n. We consider the characteristic polynomial of
A+ εC, where

C =

0
...
0

0

c 0 . . . 0

 .

We have
χA+εC(λ)(x) = (λ− x)n + ε(−1)n+1c.

If λ(ε) is an eigenvalue of A+ εC, then:

(λ− λ(ε))n = ε(−1)nc =⇒ λ(ε) = λ+ ε
1
n c

1
n ,

where the n-th root is considered as a function C → C. The problem is therefore not well-
conditioned, since the O(ε) estimate does not hold. Here, it is difficult to compute eigenvalues
since they are all close to each other.

Algorithm 2.1 – QR Algorithm, simple version

We want to compute all eigenvalues of a matrix A. For this, we consider the simple iteration:

1. A0 := A

2. We then compute for all k = 0, 1, 2, . . .: Ak = QkRk with the QR decomposition and set
Ak+1 := RkQk. Essentially, we then have that Ak → R converges, where R is a right upper

2.3. POWER METHOD 37

triangular matrix in Schur’s normal form, since:

A = Q∗RQ with Q = Q0Q1Q2 . . .

Remark 2.5

We will see in Page 43 that we can prove convergence.

2.3 Power Method

Algorithm 2.2 – Power method

To compute individual eigenvalues and eigenvectors of a matrix A ∈ Cn×n, we consider the
following procedure: for y0 ∈ Cn arbitrary, set yk+1 := Ayk for k = 1, 2, . . ., i.e. yk = Aky0.

If one has an approximation to a desired eigenvalue, the inverse power method can be more
efficient.

Algorithm 2.3 – Inverse power method (Wielandt iteration)

Let an approximation µ to a desired eigenvalue λ1 be known, which does not necessarily have
to be the largest eigenvalue. Assume

|µ− λ1| ≪ |µ− λj | ∀j = 2, . . . , n,

we have also:
1

|µ− λ1|
≫ 1

|µ− λj |
.

Since 1
µ−λj

are the eigenvalues of the matrix (µI − A)−1, we apply the power method to (µI −
A)−1. This can be done without computing the inverse matrix, by only solving the associateed
linear system: let y0 be a starting vector, we solve in the k-th step:

(µI −A)yk+1 = yk k = 0, 1, 2, . . .

We need only one LR decomposition for all iteration steps (since the matrix is the same for each
step).

Remark 2.6 – Convergence speed

The convergence speed of the inverse power method may be much better than that of the normal
power method. We can, for example, get a rough estimate of the eigenvalue and eigenvector with
the normal power method, and then use the inverse power method to obtain precise estimates.

Definition 2.4 – Rayleigh quotient

Let A ∈ Cn×n and yk as in the power method algorithm. The Rayleigh quotient is defined by:

y∗kAyk
y∗kyk

.

Theorem 2.5 – Convergence of the power method

Let A ∈ Cn×n be diagonalizable, with T−1AT = diag(λ1, . . . , λn) and T = (v1| . . . |vn), where
Avi = λvi. Assume that |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. If y0 = α1v1 + α2v2 + . . .+ αnvn with
α1 ̸= 0, then for yk+1 = Ayk:

38 CHAPTER 2. EIGENVALUE PROBLEMS

1. We have:

yk = λk
1

(
α1v1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
))

.

We note that 1
λk
1
yk converges to an eigenvector α1v1 corresponding to the largest eigenvalue.

2. For the Rayleigh quotient, we have

y∗kAyk
y∗kyk

= λ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
.

If A is normal, then:

y∗kAyk
y∗kyk

= λ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
.

Proof.

1. Let y0 = α1v1 + α2v2 + . . . + αnvn with α1 ̸= 0. We assume without loss of generality that
∥vj∥2 = 1 for all j. Then

y1 = Ay0 = α1λ1v1 + α2λ2v2 + . . .+ αnλnvn,

and iteratively we obtain:

yk = Aky0 = α1λ
k
1v1 + α2λ

k
2v2 + . . .+ αnλ

k
nvn

= λk
1

(
α1v1 + α2

(
λ2

λ1

)k

v2 + . . .+ αn

(
λn

λ1

)k

vn

)
.

2. We have:

y∗kyk =

n∑
i=1

n∑
j=1

αiλi
k
αjλ

k
j v

∗
i vj =

n∑
i=1

|αi|2|λi|2k v∗i vi︸︷︷︸
=1

+

n∑
i=1

n∑
j ̸=i

αiλi
k
αjλ

k
j v

∗
i vj

= |λ1|2k
(
|α1|2 +

n∑
i=1

|αi|2
∣∣∣∣ λi

λ1

∣∣∣∣2k
)

+ |λ1|2k
n∑

i=1

n∑
j ̸=i

αiαj

λi
k
λk
j

|λ1|2k
v∗i vj

= |α1|2|λ1|2k
(
1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
))

.

Then

y∗kAyk = y∗kyk+1 =

n∑
i=1

|αi|2|λi|2kλiv
∗
i vi +

n∑
i=1

n∑
j ̸=i

αiλi
k
αjλ

k+1
j v∗i vj

= |α1|2|λ1|2kλ1

(
1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
))

.

Then

y∗kAyk
y∗kyk

=

|α1|2|λ1|2kλ1

(
1 +O

(∣∣∣λ2

λ1

∣∣∣k))
|α1|2|λ1|2k

(
1 +O

(∣∣∣λ2

λ1

∣∣∣k)) = λ1

(
1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
))

.

For normal matrices, the terms v∗i vj = 0 vanish for i ̸= j since the eigenvectors can be chosen
to be orthogonal, and the claim follows for these matrices as well.

2.3. POWER METHOD 39

Example 2.3 – Application of the power method

Let

A =

2 1 0
1 2 1
0 1 2

 ,

λ1 = 2 +
√
2 ≈ 3.4142 is the largest eigenvalue. We get for a starting vector y0 the following

iteration:

y0 =

1
1
1

 , y1 =

3
4
3

 , y2 =

10
14
10

 , . . .

and the Rayleigh quotient is then:

y∗1Ay1
y∗1y1

=
y∗1y2
y∗1y1

=
116

34
≈ 3.4117.

Exercise
Show that the rate of convergence for this example is ≈ 0.59.

Example 2.4 – Application of the inverse power method

Let

A =

2 1 0
1 2 1
0 1 2

Let µ = 3.41 and we choose y0 =

 1
1.4
1

. We obtain:

y∗1(µI −A)−1y1
y∗1y1

=
y∗1y2
y∗1y1

= −237.3288707 ≈ 1

µ− λ1

with which we then obtain λ1 ≈ 3.414213562 and all given digits agree with the largest eigenvalue,
2 +

√
2.

Remark 2.7

To prevent overflow (the numbers becoming larger than the computer’s largest representable
number), we can set:

zk+1 := Ayk, yk+1 :=
1

∥zk+1∥∞
zk+1,

where ∥zk+1∥∞ is the largest component of zk+1 in terms of magnitude. Another option is to
normalize yk to be of unit norm at every step, or every few steps. In this case,

zk+1 := Ayk, yk+1 :=
1

∥zk+1∥2
zk+1.

Remark 2.8 – Application of the power method (Google)

What makes (or made) Google unique is an algorithm that provides a suitable order of results,
the so-called PageRank algorithm, which is about characterizing the importance of web pages.
Google determines the rank r(P) of a page P by:

r(P) =
∑

Q∈BP

r(Q)

|Q|

40 CHAPTER 2. EIGENVALUE PROBLEMS

where BP = {all pages that link to P}, and where |Q| is the number of links from Q (to any
page!). This is a recursive definition, but one can see that the vector y = (r(P1), . . . , r(PN)) is
an eigenvector of a matrix A associated to eigenvalue 1. The matrix A = (aij) is given by

aij =

{
1

|Pj | if Pj links to Pi,

0 otherwise.

Since the column sum of A is 1, 1 is the largest eigenvalue in magnitude (see the following
exercise). Thus, the power method yk+1 = Ayk yields the desired eigenvector y.
For this problem, there is an article ”The 25,000,000,000 Dollar Eigenvalue Problem: The Linear
Algebra Behind Google” by Bryan and Leisea (2005) and Langville and Meyerb (2006) in SIAM
Review.

ahttps://epubs.siam.org/doi/10.1137/050623280
bhttps://www.jstor.org/stable/j.ctt7t8z9

Exercise
Show that, if a matrix A with non-negative components has a column sum ≤ c (i.e.

∑n
i=1 Ai,j ≤ c,

∀j), then λj ≤ c for all j. If the column sum is = c, then c is the largest eigenvalue.

Answer
Note that A and AT have the same characteristic polynomial, hence the roots of χA and χAT are
the same and the eigenvalues of AT and A are equal. Apply the Gershgorin circle theorem on AT :

sp(A) = sp(AT) ⊂
n⋃

j=1

µ ∈ C : |µ− aj,j | ≤
∑
k ̸=j

|ak,j |

 .

Since A has non-negative components,
∑

k ̸=j |ak,j | =
∑

k ̸=j ak,j, hence |µ− aj,j | ≤ c− aj,j. More-
over, the reverse triangle inequality yields

|µ− aj,j | ≥ ||µ| − |aj,j || .

To show this, apply the triangle inequality to |µ| = |µ± aj,j | and |aj,j | = |aj,j ± µ|. Thus,

||µ| − |aj,j || ≤ c− aj,j ,

and
|µ| − aj,j ≤ c− aj,j , if |µ| ≥ aj,j

−|µ|+ aj,j ≤ c− aj,j , if |µ| ≤ aj,j .

The first line yields |µ| ≤ c, and the second line is for |µ| ≤ aj,j ≤ c. In both cases, we obtain
|µ| ≤ c, i.e. all eigenvalues of A are smaller or equal to c.

Now, if the column sum is equal to one we have 1TA = c1T , where 1 = (1, . . . , 1), which means
that c is indeed an eigenvalue of A, since it is an eigenvalue of AT .

2.4 Simultaneous Iteration and QR Algorithm

Motivation
In the following, let A be a real matrix whose eigenvalues satisfy

|λ1| > |λ2| > |λ3| > . . . > |λn|

i.e. in particular, A is diagonalizable. We want to compute not only the first but also the second,
third, etc., eigenvalues.

https://epubs.siam.org/doi/10.1137/050623280
https://www.jstor.org/stable/j.ctt7t8z9

2.4. SIMULTANEOUS ITERATION AND QR ALGORITHM 41

Review – Power method

Let y0 be arbitrary and yk+1 = Ayk. We know that:

yk = λk
1

(
α1ṽ1 +O

(∣∣∣∣λ2

λ1

∣∣∣∣k
))

= λk
1

|α1| sgn(α1)ṽ1︸ ︷︷ ︸
=:v1

+O

(∣∣∣∣λ2

λ1

∣∣∣∣k
) ,

where we assume that α1 ̸= 0 and ṽ1 is an eigenvector with ∥ṽ1∥2 = 1. The vector v1 is also an
eigenvector of A with ∥v1∥2 = 1. Thus, yk

∥yk∥ → v1 if λ1 > 0 and (−1)k yk

∥yk∥ → v1 if λ1 < 0. In

general, (sgnλ1)
k yk

∥yk∥ → v1.

Algorithm 2.4 – Extension of the power method

Let q0 be arbitrary with ∥q0∥2 = 1. We consider the iteration Aqk = λ
(k+1)
1 qk+1 with ∥qk+1∥2 = 1

and sgnλ
(k+1)
1 = sgn(qTk Aqk). If k is large, this is sgnλ1. We know that qk → v1 converges and

λ
(k)
1 → λ1 with the convergence rate

∣∣∣λ2

λ1

∣∣∣.
Idea (Computation of the next eigenvalue)
Now let λ1, v1 be known and we want to compute λ2, v2. We consider the orthogonal complement
to Rv1:

V = {u ∈ Rn | vT1 u = 0}.
We know dimV = n− 1. Furthermore, we consider the following mapping:

L1 := P ◦ (A|V) : V → Rn → V

where P is an orthogonal projection: Rn → V . We have q = αv1 + u ∈ Rn, where u ∈ V . Then
vT1 q = α, with which we obtain α, noting that ∥v1∥ = 1. Then Pq = u = q − αv1 = (I − v1v

T
1)q.

Thus, for u ∈ V :
L1(u) = (I − v1v

T
1)Au.

With the next theorem, we obtain that L1 has precisely the remaining eigenvalues of A.

Theorem 2.6 – Eigenvalues of L1

The eigenvalues of L1 are λ2, . . . , λn.

Proof. By Schur’s normal form, we know that for the matrix A, we have:

U∗AU =

λ1 ⋆ ⋆
. . . ⋆

0 λn

 = R

where U = (u1| . . . |un) is a unitary matrix with u1 = v1. The vectors (u2, . . . , un) form an ONB
of V , in particular vT1 uj = 0 for j ≥ 2. Then

L1(ui) = (I − v1v
T
1)Aui = (I − v1v

T
1)(AU)·,i = (I − v1v

T
1)(UR)·,i

= (I − v1v
T
1)(v1r1,i + . . .+ ui−1ri−1,i + uiλi)

= u2r2,i + . . .+ ui−1ri−1,i + uiλi.

From this formula, we can deduce the representation matrix of L1 with respect to the basis
(u2, . . . , un), which looks as follows: λ2 ⋆ ⋆

0
. . . ⋆

0 0 λn

And this matrix has precisely the eigenvalues λ2, . . . , λn.

42 CHAPTER 2. EIGENVALUE PROBLEMS

Remark 2.9

It may be sometimes convenient to have L1 in the (u1, . . . , un) basis. In this case, 0 is another
eigenvalue of L1 and its matrix in the (u1, . . . , un) basis reads

0 0 0 0
0 λ2 ⋆ ⋆

0 0
. . . ⋆

0 0 0 λn

The idea of orthogonalizing Au with respect to the previously obtained eigenvectors is called
deflation.

Algorithm 2.5 – Computation of the second eigenvalue

To compute λ2, we apply the power method to L1: let p0 ∈ V be arbitrary with ∥p0∥2 = 1.
Then by the power method:

L1(pk) = (I − v1v
T
1)Apk = λ

(k+1)
2 pk+1 with ∥pk+1∥2 = 1, sgnλ

(k+1)
2 = sgn pTk L1(pk).

Thus, λ
(k)
2 → λ2 and pk → u2 etc., and we obtain Schur’s normal form.

Algorithm 2.6 – Modification of the deflated power method

We do not compute first λ1 and v1, but we use simultaneous iteration for λ1 and λ2. This gives
us the following algorithm: let q0, p0 be arbitrary with ∥q0∥2 = ∥p0∥2 = 1 and q0 ⊥ p0. Then we
compute:

Aqk = λ
(k+1)
1 qk+1, ∥qk+1∥2 = 1, sgnλ

(k+1)
1 = sgn qTk Aqk,

and
(I − qk+1q

T
k+1)Apk = λ

(k+1)
2 pk+1, ∥pk+1∥2 = 1, sgnλ

(k+1)
2 = sgn pTkApk.

The orthogonality pk+1 ⊥ qk+1 holds.

Algorithm 2.7 – Alternative notation for simultaneous iteration

We write alternatively, but equivalently to Algorithm 2.6,

A(qk, pk) = (qk+1, pk+1)

(
λ(k+1) αk+1

0 λ
(k+1)
2

)
, αk+1 = qTk+1Apk.

The right-hand side can be obtained by applying the QR decomposition to the n × 2 matrix
A(qk, pk).

Algorithm 2.8 – Generalization of the algorithm

We choose for U0 an arbitrary orthogonal matrix (for example U0 = I). We consider the iteration:

AUk = Uk+1Rk+1,

which is precisely the QR algorithm. Then

Rk →

λ1 ⋆ ⋆

0
. . . ⋆

0 0 λn

converges and Uk → (u1, . . . , un) converges. By doing this, we obtain Schur’s normal form.

2.5. TRANSFORMATION TO HESSENBERG FORM 43

Algorithm 2.9 – QR algorithm

We set as above: Qk := UT
k−1Uk. Then

Qk+1Rk+1 = UT
k Uk+1Rk+1︸ ︷︷ ︸

=AUk

= UT
k AUk = UT

k AUk−1︸ ︷︷ ︸
UkRk

Qk = RkQk.

Thus, we obtain the following algorithm:

1. A0 = A = Q0R0 (QR decomposition in the last step)

2. A1 = R0Q0 = Q1R1 (QR decomposition)

3. A2 = R1Q1 = Q2R2 (QR decomposition)

4. ...

This justifies Algorithm 2.1.

Since the QR algorithm is a just a power method applied to n orthonormal eigenvectors, with
eigenvalues all distinct, it converges.

Remark 2.10 – Historical note on the QR algorithm

The algorithm goes back to Rutishauser, 1958, who, however, had used the LR decomposition.
The QR algorithm that we consider here goes back to Francis, 1961, and Kublanovskaya, 1961.

Motivation (Outlook)

1. The QR decomposition of an arbitrary matrix is performed with O(n3) operations, which is
too expensive. We therefore first transform A into Hessenberg form, i.e. QTAQ = H (which
is almost triangular form and has a diagonal below the main diagonal), which is about as
expensive as a QR decomposition. If A is symmetric, then we obtain for H a tridiagonal
matrix. For the QR decomposition of a Hessenberg matrix, we need only O(n2) operations,
or O(n) operations if A is symmetric. Then all Ak are again Hessenberg matrices, as we will
see in the next section.

2. The convergence speed is very slow, about
∣∣∣λ2

λ1

∣∣∣. We consider the idea of shifting the matrix

A, i.e. we consider Ak − µkI, where we choose the parameter µk such that the convergence
is accelerated. We will consider this procedure in the sixth section.

3. We have not yet captured complex eigenvalues. We cannot converge a real matrix Ak to a real
upper triangular matrix if there are complex eigenvalues. In the case of a complex eigenvalue,
A converges to a matrix in (almost) Schur’s normal form with a 2 × 2 block on the main
diagonal: (

a
(k)
r,r a

(k)
r,r+1

a
(k)
r+1,r a

(k)
r+1,r+1

)
This converges to complex conjugate eigenvalues α± iβ, as we will see in Section 2.7.

2.5 Transformation to Hessenberg Form

Idea
We will use Householder transformations, defined for a given v ∈ Rm by I − 2vvT . They can
be understood as the linear operator performing a mirror symmetry with respect to the hyperplane
orthogonal to v. In other words, if x = αv + βw with w ⊥ v, then (I − 2vvT)x = −αv + βw.

44 CHAPTER 2. EIGENVALUE PROBLEMS

Lemma 2.3 – Householder transformations

Let x ∈ Rm, there is v ∈ Rm with ∥v∥2 = 1 such that

(I − 2vv∗)x = (⋆, 0, . . . , 0).

Proof. If x1 = 0, define v = (∥x∥2, x2, . . . , xm). Then

2
vv∗

∥v∥22
x =

2

∥v∥22

∥x∥2
x2

...
xm

m∑
j=2

|xj |2 =
2

2
∑m

j=2 |xj |2

∥x∥2
x2

...
xm

m∑
j=2

|xj |2 =

∥x∥2
x2

...
xm

 .

If x1 ̸= 0, define v = (∥x∥2 + σx1, σx2, . . . , σxm), where σ = x1

|x1| (⇐⇒ x1 = |x1|σ). Then

2
vv∗

∥v∥22
x =

2

∥v∥22

∥x∥2 + σx1

σx2

...
σxm

∥x∥2x1 + σ

m∑
j=1

|xj |2

=
2

2∥x∥22 + 2∥x∥2|x1|

∥x∥2 + σx1

σx2

...
σxm

σ
(
∥x∥2|x1|+ ∥x∥22

)
=

σ∥x∥2 + x1

x2

...
xm

 .

In both cases, we obtain

(I − 2vv∗)x = (⋆, 0, . . . , 0). (2.1)

Theorem 2.7 – Transformation to Hessenberg form

Let A ∈ Rn×n. This matrix can be transformed to Hessenberg form by (n − 2) Householder
transformations:

QTAQ = H =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0
...

. . .
. . .

...

0 · · · 0 ∗ ∗

 ,

where Q := Qn−2 · . . . · Q1, and Qi :=

(
Ii 0
0 In−i − 2wiw

T
i

)
is an Householder transformation.

The matrix H is an upper triangular matrix with entries on the sub-diagonal. If A is symmetric,
H is tridiagonal.

Proof.

1. We choose Q̃1 = I − 2w1w
T
1 (with wT

1 w1 = 1) as an (n − 1) × (n − 1) Householder matrix,
such that

Q̃1

a2,1
...

an,1

 =

⋆
0
...
0

2.5. TRANSFORMATION TO HESSENBERG FORM 45

Note that Q̃1 is symmetric. We obtain:

Q1 =

(
1 0

0 Q̃1

)
and A(1) = Q1A1Q

T
1 =

a1,1
⋆
0
...
0

⋆

(
1 0

0 Q̃1

)
=

a1,1
⋆
0
...
0

⋆

 .

2. We choose Q̃2 := I − 2w2w
T
2 an (n− 2)× (n− 2) Householder matrix such that

Q̃2

a
(1)
32
...

a
(1)
n2

 =

⋆
0
...
0

 , and let Q2 =

(
I2 0

0 Q̃2

)
⇒ A(2) = Q2A

(1)QT
2 =

⋆ ⋆
⋆ ⋆
0 ⋆
... 0
...

...
0 0

⋆

.

3. We proceed inductively in this manner and obtain:

QTAQ = H

with Q := Qn−2 · . . . ·Q2 ·Q1 and H an upper triangular matrix with a nonzero subdiagonal.

4. For symmetric matrices, we have

HT = QTATQ = QTAQ = H

Due to H having the all diagonals below the subdiagonal equal to zero, all diagonals of
HT = H above the supdiagonal are zero. Therefore, H is tridiagonal.

Remark 2.11 – Consideration of computational effort

It requires about 5
3n

3 operations for a general A and for symmetric matrices about 2
3n

3 opera-
tions.

Theorem 2.8 – Inheritance of Hessenberg form

Let H = QR be a QR decomposition. We set H̃ := RQ. If H is a Hessenberg matrix, then H̃
is also a Hessenberg matrix. If H is tridiagonal and symmetric, then H̃ is also tridiagonal and
symmetric.

Proof. By a Householder transformation, we obtain (for the QR decomposition):

Q1H =

⋆
0
...
0

⋆

 and Q1 := I − 2w1w
T
1 with w1 =

⋆
⋆
0
...
0

 .

The fact that H is an Hessenberg matrix is used to have only two nonzero components in w1, since
w1 = (⋆, σH2,1, . . . , σHn,1) for some σ ∈ C, |σ| = 1. See the proof of Lemma 2.3 for more details.
Then

RQ1 =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

∗ ∗ 0
∗ ∗ 0
0 0 In−2

 =

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

46 CHAPTER 2. EIGENVALUE PROBLEMS

i.e. we obtain an upper triangular matrix with an entry on the subdiagonal. More generally, one
has Q̃k = In−k+1 − 2wkw

T
k where wk = (⋆, ⋆, 0, . . . , 0) ∈ Rn−k+1, and define

Qk =

(
Ik−1 0

0 Q̃k

)
=

Ik−1 0 0 0
0 ⋆ ⋆ 0
0 ⋆ ⋆ 0
0 0 0 In−k−1

 .

Letting Q = Q1 . . . Qn, one obtains the claim. When H (not necessarily Hessenberg) is tridiagonal,
one can show thatQ is in Hessenberg form, and so isRQ. This means that H̃ = RQ is in Hessenberg
form. Note that H̃ = RQ = QTQRQ = QTHQ, and the symmetry of H yields the symmetry of
H̃. A symmetric Hessenberg matrix is tridiagonal, so finally H̃ is symmetric and tridiagonal.

Algorithm 2.10 – Modification of the QR algorithm

1. We perform a pre-transformation, i.e. we bring QTAQ = H0 to Hessenberg form. This
requires O(n3) steps.

2. Apply the classical QR algorithm to H0, i.e. Hk = QkRk. This requires generally O(n2)
operations, and only O(n) operations in the symmetric case.

3. Hk+1 := RkQk, which also requires generally O(n2) operations, and only O(n) operations
in the symmetric case.

2.6 QR Algorithm with Shift

Motivation
We will now always assume that A has only real eigenvalues that are pairwise distinct, i.e. |λ1| >
|λ2| > . . . > |λn|. Moreover, we work on the Hessenberg matrix H = QTAQ. We want to improve
the convergence speed with a shift idea.

Idea (Shift)
We expect after the fourth section that we have the convergence rate

∣∣∣h(k)
i+1,i

∣∣∣ = O

(∣∣∣∣λi+1

λi

∣∣∣∣k
)
.

This can be very slow under certain circumstances. We consider the shifted matrix H̃ = H − µI,
which has the eigenvalues λi − µ. Applying the QR algorithm here, we obtain:

∣∣∣h̃(k)
i+1,i

∣∣∣ = O

(∣∣∣∣λi+1 − µ

λi − µ

∣∣∣∣k
)
.

This converges very quickly if µ ≈ λi+1.

Convention
We can assume without loss of generality that H is a non-reduced Hessenberg matrix, i.e. for all
i, hi+1,i ̸= 0. If an element were zero, then the matrix would have the form:

H =

(
H1 ⋆
0 H2

)
and then the eigenvalues of H are the eigenvalues of H1 and H2, so the QR algorithm would be
used separately on H1 and H2.

2.6. QR ALGORITHM WITH SHIFT 47

Theorem 2.9

Let H be a non-reduced Hessenberg matrix and µ an eigenvalue of H. Let H −µI = QR be the
QR decomposition. We consider H̃ := RQ+ µI. Then h̃n,n = µ and h̃n,n−1 = 0, i.e. the matrix
decomposes after one QR step.

Proof. We consider H − µI with hi+1,i ̸= 0 for all i. This implies that the first n − 1 columns of
this matrix are linearly independent (because column j has a component at index j+1 which does
not appear in all previous columns). We can write:

QT (H − µI) =

(
Rn−1 ∗
0 rn,n

)
=: R

This is the QR decomposition, which always exists, and Rn−1 must be invertible because it is a
square matrix of linearly independent columns. Because H−µI is singular, we must have rn,n = 0,
so the last row of RQ must also be zero. Thus, we have:

H̃ = RQ+ µI =

∗ ∗ ∗ ∗
. . . ∗ ∗ ∗

. . . ∗ ∗
0 µ

If one does not know the eigenvalue µ, one can use the iterative values h
(k)
n,n as approximations.

Algorithm 2.11 – QR algorithm with shift (for real eigenvalues)

Without loss of generality, letH0 be a non-reduced Hessenberg matrix. We considerHk−h
(k)
n,nI =

QkRk and Hk+1 := RkQk + h
(k)
n,nI for k = 1, 2, . . . until∣∣∣h(k)
n,n−1

∣∣∣ ≤ eps
(∣∣∣h(k)

n,n

∣∣∣+ ∣∣∣h(k)
n−1,n−1

∣∣∣)
where eps is the machine precision. Then we accept h

(k)
n,n as an eigenvalue. We start again with

the submatrix (h
(k)
ij)n−1

i,j=1 until we finally reach a 1× 1 matrix.

Remark 2.12 – Convergence speed

Let

H −hn,nI =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
. . . ∗ b

ε 0

⇒ Qn−2 ·Qn−3 · . . . ·Q1 · (H −hn,nI) =

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
0 a b

ε 0

where the Qi are defined as in Theorem 2.8, i.e. we have an identity matrix and once a 2 × 2
block on the main diagonal. Moreover, ε and b remain unchanged: the matrix Qi is constructed
to only act on the i-th column of H − hn,nI. In the symmetric case, b = ε. We still need to

compute the QR decomposition of

(
a b
ε 0

)
. It is:

(
a b
ε 0

)
=

1√
a2 + ε2

(
a −ε
ε a

)
︸ ︷︷ ︸

=:Q̃

(√
a2 + ε2 ba√

a2+ε2

0 − bε√
a2+ε2

)
︸ ︷︷ ︸

=:R̃

.

48 CHAPTER 2. EIGENVALUE PROBLEMS

Then

R̃Q̃ =

(∗ ∗
− bε2

a2+ε2 ∗

)

Let Qn−1 :=

(
In−2 0

0 Q̃

)
and R =

∗ ∗ ∗ ∗
0 ∗ ∗ ∗

. . . ∗ ∗
0
0

R̃

, we investigate:

H − hn,nI = Q1 · . . . ·Qn−1︸ ︷︷ ︸
=:Q

R,

and it is

H̃ = RQ+ hn,nI =

∗ ∗ ∗ ∗ ∗
. . . ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗
. . . ∗ ∗

− bε2

a2+ε2 ∗

.

We see that the left element becomes smaller at every iteration, and as soon as this is below the
machine precision, we accept hn,n as an eigenvalue. If ε2 ≪ a2, we obtain quadratic convergence,

i.e. from hn,n−1 = O(ε) it follows that h̃n,n−1 = O(ε2). For symmetric matrices, we even obtain

cubic convergence (because b = ε), i.e. from hn,n−1 = O(ε) it follows that h̃n,n−1 = O(ε3).

Remark 2.13 – Stability consideration of the QR algorithm

We finally obtain that Q̂TAQ̂ = R̂ is Schur’s normal form. The QR algorithm is stable in the
sense of backward analysis, i.e. if R̂ = Q̂T ÂQ̂ is Schur’s normal form of a perturbed matrix,
then:

∥A− Â∥2 ≤ C · eps · ∥A∥2, Q̂T Q̂ = I + F with ∥F∥2 ≤ c · eps.

Proof. Wilkinson, The Algebraic Eigenvalue Problem, 1965.

2.7 Computation of Complex Eigenvalues

Motivation
We now investigate complex, non-real eigenvalues of real matrices A ∈ Rn×n, which occur in pairs
of conjugate complex eigenvalues. Here, we will iteratively compute the real Schur normal form.

Theorem 2.10 – Real Schur normal form

For A ∈ Rn×n, there exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ =

R11 R12 . . . R1m

R22

...
. . .

...
Rmm

where each Rii is either a real number or a real 2×2 matrix with conjugate complex eigenvalues.

Proof. We proceed by induction on the number of pairs of complex conjugate eigenvalues, k. If
k = 0, then A has only real eigenvalues, and we can choose Q = U real in Schur’s normal form, as

2.7. COMPUTATION OF COMPLEX EIGENVALUES 49

in the earlier proof. For the induction step: A has a pair of complex conjugate eigenvalues, i.e. we
have an eigenvalue λ = α + iβ and λ̄ = α − iβ with β ̸= 0. Then there are linearly independent
eigenvectors v = x + iy and v̄ = x − iy (since from Av = λv it follows that Āv̄ = λ̄v̄). It is
Av = λv = (α + iβ)(x + iy) = (αx − βy) + i(αy + βx). On the other hand, Av = A(x + iy). By
coefficient comparison, we obtain:

Ax = (αx− βy), Ay = αy + βx, i.e. A(x, y) = (x, y) ·
(

α β
−β α

)
.

Since v, v̄ are linearly independent, x, y must also be linearly independent, because:

(v, v̄) = (x, y) ·
(
1 1
i −i

)
, det

(
1 1
i −i

)
= −2i ̸= 0.

The vectors x and y span a two-dimensional subspace of Rn, which A maps into itself. Let
(u1, u2) be an ONB of this subspace, which we extend to an ONB (u1, . . . , un) of Rn. We set
U := (u1, . . . , un) ∈ Rn×n, which is an orthogonal matrix. It holds that:

AU = U

(
R11 ⋆

0 Ã

)
where R11 is a 2 × 2 matrix with a pair of complex conjugate eigenvalues. By the induction
hypothesis, there exists Q̃ such that Q̃T ÃQ̃ has the block triangular form, from which the claim
follows immediately. We finally set:

Q :=

(
I2 0

0 Q̃

)
U.

Idea (QR algorithm for complex eigenvalues)
We apply the shifted QR algorithm, with the additional knowledge that there are two complex
conjugate eigenvalues. We consider the following iteration for a complex µk:

1. Hk − µkI = QkRk

2. Hk+1 := RkQk + µkI

3. Hk+1 − µ̄kI = Qk+1Rk+1

4. Hk+2 := Rk+1Qk+1 + µ̄k

Here, Qk is of course not orthogonal but unitary.

Theorem 2.11

If Hk is real, then we can choose the QR decomposition such that Hk+2 is real again.

Proof. We know that:

Hk+1 = RkQk + µkI = Q∗
k(Hk − µkI)Qk + µkI = Q∗

kHkQk

and analogously we obtain:

Hk+2 = Q∗
k+1Hk+1Qk+1 = (QkQk+1)

∗Hk(QkQk+1)

It suffices to show that QkQk+1 is real. We compute with the help of the above calculations:

QkQk+1Rk+1Rk = Qk(Hk+1 − µ̄kI)Rk = Qk(RkQk + µkI − µ̄kI)Rk

= (QkRk)
2 + (µk − µ̄k)QkRk

= (Hk − µkI)
2 + (µk − µ̄k)(Hk − µkI)

= (Hk − µkI)(Hk − µkI + µkI − µ̄kI)

= H2
k − 2Re(µk)Hk + |µk|2I =: Mk

50 CHAPTER 2. EIGENVALUE PROBLEMS

and we see that Mk is real. Since Rk+1Rk is a triangular matrix and QkQk+1 is a unitary matrix,
we have computed the QR decomposition of Mk. We can choose the QR decomposition such that
the diagonal elements of Rk, Rk+1 are real, and the upper triangular property of Rk+1Rk shows
that QkQk+1 is also real.

Remark 2.14 – Uniqueness of the QR decomposition

The QR decomposition is unique up to multiplication by a diagonal matrix.

Remark 2.15 – Computational effort

We want to compute Hk+2 from Hk only with real operations: The computation of the matrix
Mk requires O(n3) operations. We show now that we can compute Hk+2 from Hk in O(n2) real
operations.

Theorem 2.12

Let A ∈ Rn×n and H = QTAQ be a Hessenberg matrix with hi+1,i ̸= 0 for i = 1, . . . , n − 1.
Then Q and H can be determined from the first column of Q.

Proof. Let Q = (q1, . . . , qn). We have AQ = QH, i.e. Aqi =
∑i+1

j=1 qjhji. On the other hand,

QTAQ = H, i.e. qTj Aqi = hji. We take q1 as given. Then we know that h11 = qT1 Aq1. Then q2 is
a multiple of Aq1−h11q1. Thus, we can determine q2 up to the sign uniquely (because ∥q2∥2 = 1).
Thus, we also obtain h12, h21, h22. By induction, the claim follows.

Algorithm 2.12 – Francis’ QR step

1. We compute the first column of Mk: Mke1 = Hk(Hke1)− 2Re(µk)(Hke1)+ |µk|2e1, which
takes O(n2) operations.

2. We compute the Householder matrix Q0 with Q0(Mke1) = αe1, which is a reflection, and
it is:

Q0 =

⋆ ⋆ ⋆
⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆

0 I

 .

The 3 × 3 block comes from Hke1 = α1e1 + α2e2 (because H is Hessenberg), and thus
Hk(Hke1) = α1Hke1 +α2Hke2 = β1e1 + β2e2 + β3e3. So the Householder vector for Mke1
only involves three nonzero components.

3. We transform QT
0 HkQ0 into Hessenberg form H̃ in O(n2) operations with Householder

matrices Q̃1, . . . , Q̃n−3. Then we compute QTHkQ = H̃ where Q := Q0Q̃1 · . . . · Q̃n−3. It
holds H̃ = Hk+2.

Proof. When computing the Hessenberg matrix H̃ of Hk, we know that the matrices H̃ and Q are
fully determined from the first column of Q. We focus now on obtaining that first column. Write
Hk = (h1| . . . |hn), we have:

QT
0 HkQ0 =

∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

(h1 h2 h3 . . . hn

)
∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

=

∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

(LC(h1, h2, h3) LC(h1, h2, h3) LC(h1, h2, h3) h4 . . . hn

)
,

2.8. COMPUTATION OF SINGULAR VALUES 51

where LC(v1, . . . , vk) denotes a linear combination of vectors v1, . . . , vk, and the coefficients of the
linear combination may be different between all occurences of the notations “LC”. Thus,

QT
0 HkQ0 =

∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗

0 I

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
. . .

0 0 0
. . .

. . .
...

...
...

. . .
. . .

. . .

0 0 0 . . . 0 ∗ ∗

=

∗ ∗ ∗
∗ ∗ ∗
⋆ ∗ ∗ ∗

⋆ ⋆ ∗
. . .

0 0 0
. . .

. . .
...

...
...

. . .
. . .

. . .

0 0 0 . . . 0 ∗ ∗

We want to eliminate the ⋆-entries in the first column, which we can do using Householder matrices
of the form

Q̃j =

Ij 0 0

⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆ 0

⋆ ⋆ ⋆
0 0 In−j−3

 , j = 1, . . . , n− 3.

Then Q̃ie1 = e1 for i = 1, . . . , n− 3, so Qe1 = Q0e1. Since Q0 (Mke1) = αe1 and Q−1
0 = QT

0 = Q0,
Q0e1 is a multiple of Mke1. On the other hand, we knew that Mke1 = (QkQk+1) (RkRk+1) e1 =
(QkQk+1)βe1. Then QkQk+1e1 is also a multiple of Mke1. We deduce that QkQk+1e1 is a multiple
of Q0e1 = Qe1, and since the columns of QkQk+1 and Q are all normalized we get QkQk+1e1 =
±Q0e1 = Qe1. With a suitable choice of signs, QkQk+1e1 = Qe1.

Now, we have
H̃ = QTHkQ and Hk+2 = (QkQk+1)

T
Hk (QkQk+1) .

We know that Hk is a Hessenberg matrix, so Hk+1 and a fortiori Hk+2 as well. Hence, the two
equations above are two reductions of Hk to Hessenberg form, and the first column of Q and
QkQk+1 agree. Because the Hessenberg reduction is completely determined by the first column of
the orthogonal matrix, both reductions are the same, hence

Q = QkQk+1, H̃ = QTHkQ = Hk+2.

Remark 2.16 – Termination of iteration

We terminate the iteration if for ℓ = n (real eigenvalues) or ℓ = n − 1 (complex eigenvalues) it
holds: ∣∣∣h(k)

ℓ,ℓ−1

∣∣∣ ≤ eps
(∣∣∣h(k)

ℓ−1,ℓ−1

∣∣∣+ ∣∣∣h(k)
ℓ,ℓ

∣∣∣)
1. If ℓ = n, we accept h

(k)
n,n as the eigenvalue and restart with

(
h
(k)
ij

)n−1

i,j=1
.

2. If ℓ = n− 1, we accept the eigenvalues of the lower right 2× 2 block of Hk as eigenvalues

of A and restart with
(
h
(k)
ij

)n−2

i,j=1
.

2.8 Computation of Singular Values

Theorem 2.13 – About singular values

For A ∈ Rm×n, there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T

with Σ = diag(σ1, . . . , σp) ∈ Rm×n and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, where p = min{m,n}. The σj

are called singular values of A, which are uniquely determined.

52 CHAPTER 2. EIGENVALUE PROBLEMS

Proof. Let x ∈ Rn, y ∈ Rm with ∥x∥2 = ∥y∥2 = 1. Moreover, let Ax = σy with

σ = ∥A∥2 = max
∥v∥=1

∥Av∥2.

Thus, x can be chosen such that ∥Ax∥ = ∥A∥. Let V1 be an orthogonal n × n matrix with x in
the first column (i.e. we extend x to an ONB of Rn) and U1 an orthogonal m×m matrix with y
in the first column. Then

A1 := UT
1 AV1 =

σ
0
...
0

⋆

 =

(
σ wT

0 Ã1

)
,

where w ∈ Rn−1 is a suitable vector and Ã1 ∈ R(m−1)×(n−1) is a suitable matrix. We consider∥∥∥∥A1

(
σ

w

)∥∥∥∥
2

=

∥∥∥∥(σ2 + wTw

⋆

)∥∥∥∥
2

≥
√
σ2 + wTw.

On the other hand,

∥A1∥2 = max
∥v∥2=1

∥A1v∥2 = max
∥v∥2=1

∥UT
1 AV1v∥2 = max

∥u∥2=1
∥UT

1 Au∥2 = max
∥z∥2=1

∥Az∥2 = ∥A∥2 = σ.

We deduce w = 0, and thus A1 =

(
σ 0

0 Ã1

)
. By induction on Ã1, the claim follows.

Remark 2.17

Assume the same notation as in the above theorem and let U = (u1, . . . , um) and V =
(v1, . . . , vn). Furthermore, let σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0. Then

1. rankA = r

2. KerA = Span{vr+1, . . . , vn} (and vr+1, . . . , vn is an ONB of KerA)

3. ImageA = Span{u1, . . . , ur} (and u1, . . . , ur is an ONB of ImageA)

4. ∥A∥2 = σ1

5. For the Frobenius norm ∥ · ∥F , we have:

∥A∥2F :=
∑
i,j

a2ij =

r∑
k=1

σ2
k.

Remark 2.18

It holds that

A = UΣV T =

r∑
i=1

σi uiv
T
i︸︷︷︸

rank=1

.

If the rank of A is small, then much of the information about it can be stored in the vectors ui

and vi. The best approximation of A of rank k ≤ r is:

A ≈
k∑

i=1

σiuiv
T
i .

This is called the “low-rank approximation of A”, which is useful to approximate, e.g., large
N × N matrices by means of r vectors of size N . This information is needed, for example, in
data compression, physics, natural sciences (e.g. geoscience, astrophysics). . .

2.8. COMPUTATION OF SINGULAR VALUES 53

Remark 2.19 – Further application

In search engines, one often uses the method of ”latent semantic indexing,” which is stored in a
so-called term-document matrix, where for each search term and each document, it is recorded
how often the term appears there. Thus, one replaces the term-document matrix with a low-rank
approximation.

Remark 2.20 – Observation on the computation of singular values

One could apply the QR algorithm directly to ATA (for n ≤ m) or to AAT (for m ≤ n). The
product formation is computationally expensive and rounding errors occur. Therefore, we now
consider a better algorithm: If P and Q are orthogonal, then A and PAQ have the same singular
values, since:

A = UΣV T ⇐⇒ PAQ = PU︸︷︷︸
P̃

ΣV TQ︸ ︷︷ ︸
Q̃

.

Note that P̃ and Q̃ are orthogonal matrices as products of orthogonal matrices. The following
auxiliary theorem shows that we can transform any matrix A with such transformations P and
Q into bidiagonal form, and thus the problem reduces to computing the singular values of a
bidiagonal matrix.

Theorem 2.14

For A ∈ Rm×n (with m ≥ n without loss of generality), there exist orthogonal matrices P,Q
with

PAQ =

(
B

0

)
, B =

. . .

. . . 0

0
. . .

. . .

0 0
. . .

i.e. B is an n× n bidiagonal matrix.

Proof. We use Pi and Qi as Householder transformations. By multiplying from the left with P1,
we obtain:

P1A =

⋆
0
... ⋆
0

Multiplying from the right withQ1 =

(
1 0

0 Q̃1

)
, where Q̃1 ∈ R(n−1)×(n−1) is a Householder matrix,

gives:

P1AQ1 =

⋆ ⋆ 0 . . . 0
0
... Â
0

By induction on a smaller matrix Â, the claim follows.

Remark 2.21

We chase the “bad” elements on and below the subdiagonal until they “fall” out. This method
is called ”chasing” in the literature.

54 CHAPTER 2. EIGENVALUE PROBLEMS

Remark 2.22 – Computation of Singular Values of a Tridiagonal Matrix

We have a matrix BTB =: H which is tridiagonal with real nonnegative eigenvalues, and consider
a step of the QR algorithm for µ := hn,n:

M := H − µI = QR.

Then H̃ = RQ+µI = QT (H −µI)Q+µI = QTHQ. We want to compute the eigenvalues of H
without explicitly computing the matrix H or the matrix M . According to Theorem 2.12, H̃ and
Q are uniquely determined by the first column of Q. Then M = QR and QT = Qn−1 · . . . ·Q2 ·Q1

as a product of Householder transformations with

Qj =

Ij−1

∗ ∗
∗ ∗

In−j−1

 , j = 1, . . . , n− 1.

The first column of Q is Qe1 = Q1e1, hence Me1 = QRe1 = αQe1 = αQ1e1. This means that
Q1e1 is a multiple of

Me1 =

h1,1 − µ

h21

0
...
0

 .

Then

Q1e1 = ± Me1
∥Me1∥2

=

c
s
0
...
0

 with c2 + s2 = 1, thus: Q1 =

 c s
s −c

0

0 In−2

 .

We now transform QT
1 HQ1 to tridiagonal form using Theorem 2.12: since H is symmetric,

QT
1 HQ1 is also symmetric, and we are looking for Q̃ such that

H̃ = Q̃T (QT
1 HQ1)Q̃ = (Q1Q̃)TH(Q1Q̃), Q̃ =

(
I2 0
0 Q̌

)
, Q̌T Q̌ = Q̌Q̌T = I,

where H̃ is Hessenberg symmetric, hence tridiagonal. We have Q1Q̃e1 = Q1e1 = Qe1. Thus,
Q1Q̃ = Q, since the first column matches. Since H = BTB, H̃ = QTBTBQ = QTBTPTPBQ
is tridiagonal if PBQ is bidiagonal. We transform BQ1 to bidiagonal form using Theorem 2.14.

Algorithm 2.13 – Golub, Kahan, 1965

Let A ∈ Rm×n with m ≥ n. Then we perform the following algorithm:

1. We transform A with Householder matrices to bidiagonal form:

PAQ =

(
B

0

)
, B =

. . .

. . . 0

0
. . .

. . .

0 0
. . .

 , β = ∥B∥F :=

√√√√ n∑
i,j=1

b2ij .

2. We use Remark 2.22 to find the singular values of B, which are the square root of the

2.8. COMPUTATION OF SINGULAR VALUES 55

eigenvalues of H = BTB. We compute

Q1 =

⋆ ⋆
⋆ ⋆

0

0 I

as in Remark 2.22. We then transform BQ1 by “chasing” to bidiagonal form B̃. We repeat
(with B̃ instead of B) until |bn−1,n| ≤ β · eps, .i.e. until the off-diagonal term on row n− 1
is “small enough to be considered zero”. When this is done, hn−1,n ≈ 0, hence hn,n is a
good approximation to the eigenvalue of H, which is the square of a singular value of B
(which is itself a singular value of A).

3. We reduce the dimension by one and repeat with (bij)
n−1
i,j=1, until we finally reach (almost-)

diagonal form.

Remark 2.23

Due to equivalence to the QR algorithm for H = BTB, we obtain cubic convergence, since this
matrix is symmetric and tridiagonal.

	Fast Fourier Transform
	Fourier Series
	Discrete Fourier Transform
	Fast Fourier Transform (FFT)
	Approximation of Fourier coefficients, trigonometric interpolation
	Inverse Convolution Problem, Regularization, Filtering
	Numerical Deconvolution, Smoothing of Measured Data

	Eigenvalue Problems
	Fundamentals
	Conditioning of the Eigenvalue Problem
	Power Method
	Simultaneous Iteration and QR Algorithm
	Transformation to Hessenberg Form
	QR Algorithm with Shift
	Computation of Complex Eigenvalues
	Computation of Singular Values

